2020-2021年潍坊市高密市新人教版七年级下期末数学试卷_第1页
2020-2021年潍坊市高密市新人教版七年级下期末数学试卷_第2页
2020-2021年潍坊市高密市新人教版七年级下期末数学试卷_第3页
2020-2021年潍坊市高密市新人教版七年级下期末数学试卷_第4页
2020-2021年潍坊市高密市新人教版七年级下期末数学试卷_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020-2021学年山东省潍坊市高密市七年级(下)期末数学试卷一、选择题(每小题3分,共计36分)1点(3,2)关于x轴的对称点为() A (3,2) B (3,2) C (3,2) D (2,3)2a2a2a2的结果是() A a2 B a5 C a6 D a73已知空气的单位体积质量为1.24103克/厘米3,1.24103用小数表示为() A 0.000124 B 0.0124 C 0.00124 D 0.001244下列运算正确的是() A x8x4=x2 B t4(t2)=t2 C b2mbm=b2 D (m)6(m)2=m45已知:一等腰三角形的两边长x,y满足方程组,则此等腰三

2、角形的周长为() A 5 B 4 C 3 D 5或46小明计算一个二项式的平方时,得到正确结果a210ab+,但最后一项不慎被污染了,这一项应是() A 5b B 5b2 C 25b2 D 100b27已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A 5 B 6 C 11 D 168如图所示,点C在以AB为直径的O上,A=2021则BOC等于() A 2021B 30 C 40 D 509如果(m3)m=1,那么m应取() A m3 B m=0 C m=3 D m=0,4或210计算(a+m)(a+)的结果中不含关于字母a的一次项,则m等于() A 2 B 2 C D 11

3、如图所示,被纸板遮住的三角形是() A 直角三角形 B 锐角三角形 C 钝角三角形 D 以上三种情况都有可能12如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是() A 3 B 4 C 5 D 6二、填空题(每小题3分,共计24分)13若O的半径为6cm,则O中最长的弦为厘米14一个正多边形的内角和是1440,则这个多边形的边数是15若2m=,则m=16正十边形的每个外角都等于度17如图,在ABC中,AB=5厘米,BC=3厘米,BM为中线,则ABM与BCM的周长之差是厘米18将3x(ab)9y(ba)分解因式,应提取的公因式是19已知点M(a+3,4a)在y轴上,则

4、点M的坐标为2021A沿北偏东60的方向行驶到B,再从B沿南偏西2021方向行驶到C,则ABC=度三、解答题(本大题共计60分)21计算:(1)2021220212021(2)(mn)6(nm)4(mn)3(3)(a2b+3c)(a2b3c)22一个零件的形状如图,按规定A应等于90,B、C应分别是21和32,现测量得BDC=148,你认为这个零件合格吗?为什么?23先化简,再求值:(1)(x+y)24xy,其中x=12,y=9(2)(2a+b)(2ab)+b(2a+b)4a2,其中a=,b=224如图所示,正方形ABCD的边长为1,依次以A,B,C,D为圆心,以AD,BE,CF,DG为半径画

5、扇形,求阴影部分的面积25把下列各式进行因式分解(1)ax27ax+6a(2)xy29x(3)1x2+2xyy2(4)8(x22y2)x(7x+y)+xy26如图所示,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积2020-2021学年山东省潍坊市高密市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共计36分)1点(3,2)关于x轴的对称点为() A (3,2) B (3,2) C (3,2) D (2,3)考点: 关于x轴、y轴对称的点的坐标分析: 根据关于x轴对称点的坐标特点:横坐标不变

6、,纵坐标互为相反数可直接写出答案解答: 解:点(3,2)关于x轴的对称点为(3,2),故选:A点评: 此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律2a2a2a2的结果是() A a2 B a5 C a6 D a7考点: 负整数指数幂;同底数幂的乘法分析: 首先根据同底数幂的乘法法则,求出a2a2的值是多少;然后用所得的积乘以a2,求出算式a2a2a2的结果是多少即可解答: 解:a2a2a2=a4a2=a4a2=a6故选:C点评: (1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:ap=(a0,p为正整数);计算负整数指数幂时,一定要根据负整数指

7、数幂的意义计算;当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:底数必须相同;按照运算性质,只有相乘时才是底数不变,指数相加3已知空气的单位体积质量为1.24103克/厘米3,1.24103用小数表示为() A 0.000124 B 0.0124 C 0.00124 D 0.00124考点: 科学记数法原数专题: 应用题分析: 科学记数法的标准形式为a10n(1|a|10,n为整数)本题把数据“1.24103中1.24的小数点向左移动3位就可以得到解答: 解:把数据“1.241

8、03中1.24的小数点向左移动3位就可以得到为0.001 24故选D点评: 本题考查写出用科学记数法表示的原数将科学记数法a10n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法4下列运算正确的是() A x8x4=x2 B t4(t2)=t2 C b2mbm=b2 D (m)6(m)2=m4考点: 同底数幂的除法分析: 利用同底数幂的除法法则:底数不变,指数相减判定即可解答: 解:A、x8x4=x4,本选项错误;B、t4(t2)=t2,本选项错误;C、

9、b2mbm=b2m,本选项错误;D、(m)6(m)2=m4正确故选:D点评: 本题主要考查了同底数幂的除法,解题的关键是熟记同底数幂的除法法则5已知:一等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为() A 5 B 4 C 3 D 5或4考点: 等腰三角形的性质;解二元一次方程组;三角形三边关系专题: 压轴题;分类讨论分析: 求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长首先求出方程组的解,再根据三角形三边关系定理列出不等式,确定是否符合题意解答: 解:解方程组得,当腰为2,1为底时,2122+1,能构成三角形,周长为2+2+1=5;当腰为1,2为底时,1+1=2,不能构

10、成三角形故选A点评: 本题从边的方面考查三角形,涉及分类讨论的思想方法求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去6小明计算一个二项式的平方时,得到正确结果a210ab+,但最后一项不慎被污染了,这一项应是() A 5b B 5b2 C 25b2 D 100b2考点: 完全平方式分析: 根据乘积二倍项找出另一个数,再根据完全平方公式即可确定解答: 解:10ab=2(5)b,最后一项为(5b)2=25b2故选C点评: 利用了完全平方公式:(a+b)2=a2+2ab+b2,熟记公式结构特点是求解的关键7已知三角形两边的长分别是4和10,则

11、此三角形第三边的长可能是() A 5 B 6 C 11 D 16考点: 三角形三边关系专题: 探究型分析: 设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可解答: 解:设此三角形第三边的长为x,则104x10+4,即6x14,四个选项中只有11符合条件故选:C点评: 本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边8如图所示,点C在以AB为直径的O上,A=2021则BOC等于() A 2021B 30 C 40 D 50考点: 圆周角定理分析: 根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆

12、心角的一半求解解答: 解:点C在以AB为直径的O上,A=2021BOC=2A=40故选C点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9如果(m3)m=1,那么m应取() A m3 B m=0 C m=3 D m=0,4或2考点: 零指数幂;有理数的乘方分析: 根据任何非零数的0次幂为1和1的偶次幂为1进行解答即可解答: 解:(03)0=1,m=0,(23)2=1,m=2,(43)4=1,m=4,故选:D点评: 本题考查的是零指数幂和有理数的乘方,掌握任何非零数的0次幂为1和有理数的乘方法则是解题的关键10计算(a+m)(a+)的结果中

13、不含关于字母a的一次项,则m等于() A 2 B 2 C D 考点: 多项式乘多项式分析: 多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加依据法则运算,展开式不含关于字母a的一次项,那么一次项的系数为0,就可求m的值解答: 解:(a+m)(a+)=a2+(m+)a+m,又不含关于字母a的一次项,m+=0,m=故选D点评: 本题考查了多项式乘多项式法则,相乘后不含哪一项,就让这一项的系数等于011如图所示,被纸板遮住的三角形是() A 直角三角形 B 锐角三角形 C 钝角三角形 D 以上三种情况都有可能考点: 三角形内角和定理分析: 三角形按角分类,可以分为

14、锐角三角形、直角三角形、钝角三角形有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形解答: 解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个锐角故选D点评: 本题考查了三角形内角和定理的运用以及图形的识别能力和推理能力,解题的关键是熟记三角形内角和定理12如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是() A 3 B 4 C 5 D 6考点: 平面镶嵌(密铺)分析: 由镶嵌的条件知,在一个顶点处各个内角和为360解答: 解:正三角形的每个内角是60,正方形的每个内角是90,6

15、0n+290=36060n+180=36060n=180,n=3故选A点评: 几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角二、填空题(每小题3分,共计24分)13若O的半径为6cm,则O中最长的弦为12厘米考点: 圆的认识分析: 根据直径为圆的最长弦求解解答: 解:O的半径为6cm,O的直径为12cm,即圆中最长的弦长为12cm故答案为12点评: 本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)14一个正多边形的内角和是1440,则这个多边形的边数是10考点: 多边形内角与外角专题: 常规题型分析: 根据多边形的

16、内角和公式列式求解即可解答: 解:设这个多边形的边数是n,则(n2)180=1440,解得n=10故答案为:10点评: 本题考查了多边形的内角和公式,熟记公式是解题的关键15若2m=,则m=6考点: 负整数指数幂分析: 首先将变形为底数为2的幂的性质,然后即可确定出m的值解答: 解:=26,m=6故答案为:6点评: 本题主要考查的是负整数指数幂的性质,应用负整数指数幂的性质将转化为26是解题的关键16正十边形的每个外角都等于36度考点: 多边形内角与外角专题: 常规题型分析: 直接用360除以10即可求出外角的度数解答: 解:36010=36故答案为:36点评: 本题主要考查了多边形的外角和等

17、于360,比较简单17如图,在ABC中,AB=5厘米,BC=3厘米,BM为中线,则ABM与BCM的周长之差是2厘米考点: 三角形的角平分线、中线和高分析: 根据中线的定义可得,ABM与BCM的周长之差=ABBC,据此即可求解解答: 解:ABM与BCM的周长之差=ABBC=53=2(厘米)故答案是:2点评: 本题考查了中线的定义,理解ABM与BCM的周长之差=ABBC是关键18将3x(ab)9y(ba)分解因式,应提取的公因式是3(ab)考点: 因式分解-提公因式法专题: 计算题分析: 原式变形后,找出公因式即可解答: 解:原式=3x(ab)+9y(ab),应提前的公因式为3(ab)故答案为:3

18、(ab)点评: 此题考查了因式分解提公因式法,熟练掌握提取公因式的方法是解本题的关键19已知点M(a+3,4a)在y轴上,则点M的坐标为(0,7)考点: 点的坐标分析: 根据y轴上点的特点解答即可解答: 解:点M(a+3,4a)在y轴上,a+3=0,即a=3,4a=7,点M的坐标为(0,7)故答案填(0,7)点评: 本题主要考查坐标轴上的点的坐标的特征,注意y轴上点的特点即横坐标为02021A沿北偏东60的方向行驶到B,再从B沿南偏西2021方向行驶到C,则ABC=40度考点: 方向角;三角形的外角性质分析: 根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与

19、外角的关系求解解答: 解:如图,A沿北偏东60的方向行驶到B,则BAC=9060=30,B沿南偏西2021方向行驶到C,则BCO=90202170,又ABC=BCOBAC,ABC=7030=40故答案是:40点评: 解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解三、解答题(本大题共计60分)21计算:(1)2021220212021(2)(mn)6(nm)4(mn)3(3)(a2b+3c)(a2b3c)考点: 整式的混合运算分析: (1)首先根据平方差公式,求出20212021的值是多少,然后用20212减去求出的20212021值,求出算式202122021

20、2021的值是多少即可(2)根据整式的混合运算顺序,首先计算中括号里面的,然后计算中括号外面的,求出算式的值是多少即可(3)根据平方差公式,求出算式(a2b+3c)(a2b3c)的值是多少即可解答: 解:(1)2021220212021=20212(20211)(2021+1)=2021220212+1=1(2)(mn)6(nm)4(mn)3=(mn)2(mn)3=(mn)5(3)(a2b+3c)(a2b3c)=(a2b)2(3c)2=a24ab+4b29c2点评: 此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算

21、顺序和有理数的混合运算顺序相似22一个零件的形状如图,按规定A应等于90,B、C应分别是21和32,现测量得BDC=148,你认为这个零件合格吗?为什么?考点: 三角形的外角性质专题: 应用题分析: 直接利用图形中的外角和等于与它不相邻的两个内角和求解解答: 解:延长CD与AB相交于点FDFB=C+A=32+90=122,又BDC=DFB+B=122+21=143,实际量得的BDC=148,143148,这个零件不合格点评: 本题考查了三角形的内角和外角之间的关系三角形的外角等于与它不相邻的两个内角和23先化简,再求值:(1)(x+y)24xy,其中x=12,y=9(2)(2a+b)(2ab)

22、+b(2a+b)4a2,其中a=,b=2考点: 整式的混合运算化简求值分析: (1)利用完全平方公式计算和因式分解,进一步代入求得答案即可;(2)利用整式的乘法和平方差公式计算,进一步代入求得答案即可解答: 解:(1)原式=x2+2xy+y24xy=(xy)2,当x=12,y=9时,原式=9(2)原式=4a2b2+2ab+b24a2=2ab,当a=,b=2时,原式=2点评: 此题考查整式的化简求值,先利用整式的乘法计算公式和计算方法计算合并,进一步代入求得答案即可24如图所示,正方形ABCD的边长为1,依次以A,B,C,D为圆心,以AD,BE,CF,DG为半径画扇形,求阴影部分的面积考点: 扇形面积的计算分析: 由图可知,扇形的半径分别为1,2,3,4,圆心角为90,再由扇形的面积公式即可得出结论解答: 解:正方形ABCD的边长为1,扇形的半径分别为1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论