版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复习课(二)直接证明与间接证明合情推理(1)近几年的高考中归纳推理和类比推理有时考查,考查的形式以填空题为主,其中归纳推理出现的频率较高,重点考查归纳、猜想、探究、类比等创新能力(2)处理与归纳推理相关的类型及策略与数字有关:观察数字特点,找出等式左右两侧的规律可解与式有关:观察每个式的特点,找到规律后可解进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想其中找到合适的类比对象是解题的关键1归纳推理的特点及一般步骤2类比推理的特点及一般步骤典例(1)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到类似结论:已知正四面体PAB
2、C的内切球体积为V1,外接球体积为V2,则()A.B.C. D.(2)(陕西高考)观察下列等式:1,1,1,据此规律,第n个等式可为_解析(1)正四面体的内切球与外接球的半径之比为13,故.(2)等式的左边的通项为,前n项和为1;右边的每个式子的第一项为,共有n项,故为.答案(1)D(2)1类题通法(1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误1某种树的分枝生长规律
3、如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为()A21 B34C52 D55解析:选D因为211,321,532,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为213455.2在平面几何中:ABC的C内角平分线CE分AB所成线段的比为.把这个结论类比到空间:在三棱锥ABCD中(如图),DEC平分二面角ACDB且与AB相交于E,则得到类比的结论是_解析:由平面中线段的比转化为空间中面积的比可得 .答案:演绎推理(1)演绎推理在高考中不会刻意去考查,但实际上是无处不在,常以数列、不等式、立体几何、解析几何等主干知识为载体进行考查(2)解答此类问
4、题,结合已学过的知识和生活中的实例,了解演绎推理的含义、基本方法在证明中的应用是关键演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的因此,在演绎推理中,只要前提及推理正确,结论必然正确典例已知f(x) ,数列an的前n项和为Sn,点Pn在曲线yf(x)上(nN*),且a11,an0.(1)求数列an的通项公式;(2)求证:Sn(1),nN*.解(1)f(an),且an0,4(nN*)数列是等差数列,首项1,公差d4,14(n1),a.an0,an(nN*)(2)证明:an,Sna1a2an(1)()()(1)类题通法应用三段论证明问题时,要充分挖
5、掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论常见的解题错误:(1)条件理解错误(小前提错);(2)定理引入和应用错误(大前提错);(3)推理过程错误等1已知a,函数f(x)ax,若实数m,n满足f(m)f(n),则m,n的大小关系是.解析:当0af(n),得mn.答案:m0,f(x)是R上的偶函数,求a的值解析:f(x)是R上的偶函数,f(x)f(x),即,(exex)a0.0对一切xR恒成立,a0,即a21.又a0,a1.综合法与分析法(1)综合法与分析法是高考重点考查内容,一般以某一知识点作为载体,考
6、查由分析法获得解题思路以及用综合法有条理地表达证明过程(2)理解综合法与分析法的概念及区别,掌握两种方法的特点,体会两种方法的相辅相成、辩证统一的关系,以便熟练运用两种方法解题1综合法:是从已知条件推导出结论的证明方法;综合法又叫做顺推证法或由因导果法2分析法:是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)”“即要证”“只需证”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立典例设a0,b0,ab1,求证:8.证明法一:综合法因为a0,b0,ab1,所以1ab2,ab,所以4,又(ab)24,
7、所以8(当且仅当ab时等号成立)法二:分析法因为a0,b0,ab1,要证8.只要证8,只要证8,即证4.也就是证4.即证2,由基本不等式可知,当a0,b0时,2成立,所以原不等式成立类题通法综合法和分析法的特点(1)综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式(2)分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是
8、充分条件与必要条件1已知a0,b0,如果不等式恒成立,那么m的最大值等于()A10B9C8 D7解析:选Ba0,b0,2ab0.不等式可化为m(2ab)52.52549,即其最小值为9,m9,即m的最大值等于9.2若abcd0且adbc,求证:.证明:要证,只需证()2()2,即ad2bc2,因adbc,只需证,即adbc,设adbct,则adbc(td)d(tc)c(cd)(cdt)0,故adbc成立,从而成立.反证法(1)反证法是证明问题的一种方法,在高考中很少单独考查,常用来证明解答题中的一问(2)反证法是间接证明的一种基本方法,使用反证法进行证明的关键是在正确的推理下得出矛盾1使用反证
9、法应注意的问题:利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的2一般以下题型用反证法:(1)当“结论”的反面比“结论”本身更简单、更具体、更明确;(2)否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;(3)有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法典例(1)否定:“自然数a,b,c中恰有一个偶数”时正确的反设为()Aa,b,c都是偶数Ba,b,c都是奇数Ca,b,c中至少有两个偶数Da,b,c中都是奇数或至少有两个偶数(2)已知:ac2(bd)求证:方程x2axb0与方程x2
10、cxd0中至少有一个方程有实数根解析(1)自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c中都是奇数或至少有两个偶数”答案:D(2)证明:假设两方程都没有实数根则1a24b0与2c24d0,有a2c22ac,即ac2(bd),与已知矛盾,故原命题成立类题通法反证法是利用原命题的否命题不成立则原命题一定成立来进行证明的,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的1已知xR,ax2,b2x,cx2x1,试证明a,b,c至少有一个不
11、小于1.证明:假设a,b,c均小于1,即a1,b1,c1,则有abc3,而abc2x22x32233,两者矛盾,所以假设不成立,故a,b,c至少有一个不小于1.2设二次函数f(x)ax2bxc(a0)中的a,b,c都为整数,已知f(0),f(1)均为奇数,求证:方程f(x)0无整数根证明:假设方程f(x)0有一个整数根k,则ak2bkc0,f(0)c,f(1)abc都为奇数,ab必为偶数,ak2bk为奇数当k为偶数时,令k2n(nZ),则ak2bk4n2a2nb2n(2nab)必为偶数,与ak2bk为奇数矛盾;当k为奇数时,令k2n1(nZ),则ak2bk(2n1)(2naab)为一奇数与一偶
12、数乘积,必为偶数,也与ak2bk为奇数矛盾综上可知方程f(x)0无整数根1用演绎推理证明函数yx3是增函数时的大前提是( )A增函数的定义B函数yx3满足增函数的定义C若x1x2,则f(x1)x2,则f(x1)f(x2)解析:选A根据演绎推理的特点知,演绎推理是一种由一般到特殊的推理,所以函数yx3是增函数的大前提应是增函数的定义2数列an中,已知a11,当n2时,anan12n1,依次计算a2,a3,a4后,猜想an的表达式是( )Aan3n2Bann2Can3n1 Dan4n3解析:选B求得a24,a39,a416,猜想ann2.3在平面直角坐标系内,方程1表示在x,y轴上的截距分别为a,
13、b的直线,拓展到空间直角坐标系内,在x,y,z轴上的截距分别为a,b,c(abc0)的平面方程为()A.1 B.1C.1 Daxbycz1解析:选A类比到空间应选A.另外也可将点(a,0,0)代入验证4(山东高考)用反证法证明命题“设a,b为实数,则方程x3axb0至少有一个实根”时,要做的假设是()A方程x3axb0没有实根B方程x3axb0至多有一个实根C方程x3axb0至多有两个实根D方程x3axb0恰好有两个实根解析:选A至少有一个实根的否定是没有实根,故要做的假设是“方程x3axb0没有实根”5公差不为零的等差数列an的前n项和为Sn.若a4是a3与a7的等比中项,S832,则S10
14、()A18 B24C60 D90解析:选C由aa3a7得(a13d)2(a12d)(a16d),即2a13d0.再由S88a1d32,得2a17d8,则d2,a13.所以S1010a1d60,选C.6已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则2”若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若BCD的中心为M,四面体内部一点O到四面体各面的距离都相等”,则()A1 B2C3 D4解析:选C如图,设正四面体的棱长为1,则易知其高AM,此时易知点O即为正四面体内切球的球心,设其半径为r,利用等积法有4rr,故AOAMMO,故AOOM3.7图1
15、是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是.解析:分别观察正方体的个数为:1,15,159,归纳可知,第n个叠放图形中共有n层,构成了以1为首项,以4为公差的等差数列,所以Snnn(n1)422n2n,所以S7272791.答案:918对于命题:若O是线段AB上一点,则|0,将它类比到平面的情形是:若O是ABC内一点,则SOBCSOCASOBA0,将它类比到空间的情形应该是:若O是四面体ABCD内一点,则_解析:根据类比的特点和规律,所得结论形式上一致,由线段类比到平面,平面类比到空间,由线段长类比
16、为三角形面积,三角形面积再类比成四面体的体积,故可以类比为VO BCDVO ACDVO ABDVO ABC0.答案:VO BCDVO ACDVO ABDVO ABC09(全国卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_解析:法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1
17、和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.答案:1和310设函数f(x)exln x,证明:f(x)1.证明:由题意知f(x)1等价于xln xxex.设函数g(x)xln x,则g(x)1ln x.所以当x时,g(x)0.故g(x)在上单调递减,在上单调递增,从而g(x)在(0,)上的最小值为g.设
18、函数h(x)xex,则h(x)ex(1x)所以当x(0,1)时,h(x)0;当x(1,)时,h(x)0时,g(x)h(x),即f(x)1.11下面(a)、(b)、(c)、(d)为四个平面图(1)数出每个平面图的顶点数、边数、区域数,并将相应结果填入下表:顶点数边数区域数(a)463(b)12(c)6(d)15(2)观察上表,若记一个平面图的顶点数、边数、区域数分别为E,F,G,试推断E,F,G之间的等量关系;(3)现已知某个平面图有2 016个顶点,且围成2 016个区域,试根据以上关系确定该平面图的边数解:(1)顶点数边数区域数(a)463(b)8125(c)694(d)10156(2)EGF1.(3)边数FEG12 0162 01614 031.12.ABC是以B为直角顶点的直角三角形,AB1,BC2,D为BC的中点直线l过点A且垂直于平面ABC,P是l上异于A的点(如右图)(1)证明:P在l上运动时,恒有BPDBAD;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024矿山劳务承包合同范本
- 2024质押式借款合同范本
- 2024绿植花卉租赁合同(详细版)
- 2024自家租房简单合同范本
- 2024计算机软件著作权登记委托代理合同范文
- 2024无线覆盖合同模板
- 2024洲际酒店管理合同
- 深圳大学《应用光学实验》2021-2022学年第一学期期末试卷
- 创业策划书集锦15篇
- 美容院消费股东协议书(2篇)
- 走近湖湘红色人物智慧树知到答案2024年湖南工商大学
- 小学生家长会家长发言课件
- 三年级科学期中考试质量分析
- 我的教育教学故事(30篇)
- 降水井施工方案(完整版)
- 牵引供电系统基本原理PPT演示文稿
- 阿波罗和达芙妮的故事ppt课件
- 小学少先队大队委竞选报名表
- 送教上门教学计划(共8篇)
- 《最小公倍数》ppt_课件.ppt
- 鱼道演示.ppt
评论
0/150
提交评论