合肥市2017高三下学期第二次教学质量检测理科数学试题-含答案_第1页
合肥市2017高三下学期第二次教学质量检测理科数学试题-含答案_第2页
合肥市2017高三下学期第二次教学质量检测理科数学试题-含答案_第3页
合肥市2017高三下学期第二次教学质量检测理科数学试题-含答案_第4页
合肥市2017高三下学期第二次教学质量检测理科数学试题-含答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、合肥市2017高三下学期第二次教学 质量检测数学试题(理)第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.为虚数单位,若复数是纯,则实数( )A B C D2.已知,若,则实数的取值范围是( )A B C D3.已知变量,满足约束条件,则目标函数的最小值为( )A B C D 4.若输入,执行如图所示的程序框图,输出的( )A B C. D5.若中心在原点,焦点在轴上的双曲线离心率为,则此双曲线的渐近线方程为( )A B C. D6.等差数列的前项和为,且,则( )A B C. D7.一个几何体的三视图及其尺寸如图所

2、示,则该几何体的体积为( )A B C. D8.对函数,如果存在使得,则称与为函数图像的一组奇对称点.若(为自然数的底数)存在奇对称点,则实数的取值范围是( )A B C. D9.若平面截三棱锥所得截面为平行四边形,则该三棱锥与平面平行的棱有( )A条 B条 C.条 D条或条 10.已知件产品中有件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则( )A B C. D11.锐角中,内角,的对边分别为,且满足,若,则的取值范围是( )A B C. D12.已知函数(为自然对数的底数)有两个极值点,则实数的取值范围是( )A B C. D第卷(共90分)二、填空题(每题5分,满分20分

3、,将答案填在答题纸上)13.等比数列满足,且,则 14.不共线向量,满足,且,则与的夹角为 15.在的展开式中,常数项为 16.已知关于的方程在上有实根,则实数的最大值是 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知,函数.()求函数图像的对称轴方程;()若方程在上的解为,求的值.18. 某校计划面向高一年级名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有人.在这名学生中选择社会科学类的男生、女生均为人.()分别计算抽取的样本中男生及女生选择

4、社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;()根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?选择自然科学类选择社会科学类合计男生女生合计附:,其中.19. 矩形中,点为中点,沿将折起至,如右图所示,点在面的射影落在上.()求证:;()求二面角的余弦值.20. 如图,抛物线:与圆:相交于,两点,且点的横坐标为.过劣弧上动点作圆的切线交抛物线于,两点,分别以,为切点作抛物线的切线,与相交于点.()求的值;()求动点的轨迹方程.21. 已知.()求的单调区间;()设,为函数的两个零点,求证:.请考生在2

5、2、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.()求出圆的直角坐标方程;()已知圆与轴相交于,两点,直线:关于点对称的直线为.若直线上存在点使得,求实数的最大值.23.选修4-5:不等式选讲已知函数.()求函数的定义域;()若当时,不等式恒成立,求实数的取值范围.参考答案一、选择题1-5:DABCB 6-10:DABCB 11、12:CA二、填空题13. 14. 15. 16.三、解答题17.解:()令,得即的对称轴方程为,()由条件知,且易知与关于对称,则18.

6、()由条件知,抽取的男生人,女生人。男生选择社会科学类的频率为,女生选择社会科学类的频率为.由题意,男生总数为人,女生总数为人所以,估计选择社会科学的人数为人.()根据统计数据,可得列联表如下:选择自然科学类选择社会科学类合计男生女生合计所以,在犯错误的概率不超过的前提下认为科类的选择与性别有关.19.解:()由条件,点在平面的射影落在上平面平面,易知平面,而平面()以为坐标原点,以过点且平行于的直线为轴,过点且平行于的直线为轴,直线为轴,建立如图所示直角坐标系.则,设平面的法向量为则,即,令,可得设平面的法向量为则,即,令,可得考虑到二面角为钝二面角,则二面角的余弦值为.20.解:()由点的横坐标为,可得点的坐标为,代入,解得()设,.切线:,代入得,由解得方程为,同理方程为联立,解得方程为,其中,满足,联立方程得,则代入可知满足代入得考虑到,知动点的轨迹方程为,21.解:(),当时,即的单调递增区间为,无减区间;当时,由得时,时,时,易知的单调递增区间为,单调递减区间为()由()知的单调递增区间为,单调递减区间为.不妨设,由条件知,即构造函数,与图像两交点的横坐标为,由可得,而,知在区间上单调递减,在区间上单调递增.可知欲证,只需证,即证考虑到在上递增,只需证由知,只需证令,则即单增,又,结合知,即成立,即成立22.解:()由得,即,即圆的标准方程为.():

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论