下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Evolution of Supermassive Black Holes BinarySolutionA. Dynamical Frictionpy =, assuming that 1. One can ndA1. The de ection angle is de ned from: tan Rpxpy=Fy dt, and according to Newtons gravitylawGMmb2Fy=cos3 bdv cos2 Changing the variable dt =we haveZ/2GMbv2GMmbvpy =cos d =./2Here we assume that
2、the body moves along the stright line, due to 1, see Fig 1. Sopy2GM2b1 . =pbv2bA2. During the transit of a massive body, stars energy remaconstant: p2 + p2 = const.xyHence222(p p ) + p =y p .xWe know that py p, so the momentum change along the x-axis:p222G2M 2mpx = y = p = .2p2b2v3A3. To calculate n
3、et force we might integrate over stars with di erent impact parameters. The number of stars transits during the time t equals N = 2bvndb t, so force, decelerating the object along the x-axis,Z 1 t2 nm Zbmax db 222FDF(1)px dN = 4G M= 4G Mlog =v2bv2bminThe above formulas are true only for b b1, so the
4、 lower integration limit is bmin = b1, and the upper limit is determined by the galaxy size bmax = R. So we have2 2(2)FDF = 4G Mlog v2where = R/b1.GMv2A4. We calculate:b1 = 11 pc, log = 7.6.B. Gravitational slingshotB1. Fromthesecond Newtons lawmv2GMm ,=4a2212q GM . The system energy isand we have f
5、or the orbital velocity v bin =4aMv2GM 2GM 2 .E = Ekin + U = 2 = 22a4aB2. From angular momentum conservation lawb = rmv0,express v0. Write down the energy conservation law2v2GM2 0=rm22q 2GM2 .and derive b = rm1 +2rmB3. To estimate the time between collisions let us use an analogy with the gas. As kn
6、own from the molecular kinetic theory, given that molecules have radii r, thermal velocities v, and the molecular concentration is n, time t between collisions of one molecule with the others can bebmax1estimated from the relation r2vtn = 1. In our problem radius, therefore for estimation it can be
7、written t =stands in place of the molecule.2bnmaxbmax,Estimate the maximal impact parametercorresponding to the star collision with thebinary system. The star should reach the distance of a to the binary system to collide. Whenthe star is at large distances from the SBH binary, it interacts with it
8、as with a poqint object 4GM .of mass M2 = 2M . From the results of B.2, assuming rm = a, we obtainbmax= a1 +2aTaking into account that , simplify: bmax =GMa, so we haveGMa2mt =.GMaB4. During the one act of gravitational slingshot, star energy increases at average by Estar =mv2m.2 bin 22So after the
9、one collision the energy of the binary system decreases by the same magnitude.m 2vbin, we derive E = v.Taking into account that 2bin2 2dE EG M 4dEGM 2 ,= . In respect to=Average binary system energy loss rate equals=dttdt4a2orbit radius variation rate can be estimated asGa2 .dadt= (3)B5. Obtained eq
10、uation can be easilyintegratedda a2G= dt.(4) Ga1To reduce the radius twice it takes time TSS = 0.0048 Gy.3C. Emission of gravitational waves?1. Usingpreviousresults(B) one can obtain:GM 2 da4a2 dt ;dGM 2dE(5)=dtdt4aThis leads to the di erential equation:GM 2 da1024 G6M 2a4(6)= ,4a2 dt5c5r GMwhere an
11、gular velocity is known from part B: =The desirable result is:4a3 .G3M 3da dt(7)= c5a3?2. Solving the equation one can obtain:G3M 3a4G3M 3da2565 2 a3 = (8)The nal result for time: TGW ;dt4c5c5a4c552.TGW =(9)?3. Solvingtheprevious equation:1024G3M 3s 1024 tHG3M 34(10) 0.098 pc.aH =5c5D. Full evolutio
12、nD1. The gRalaxy is spherically symmetric, so mass enclosed within a sphere of radius r equalsm(r) =r 4x2(x) dx = 2r .Thus the free fall acceleration of the body equals in the0GGm(r)2 .gravitational eld of stars is g(r) =Therefore the body velocity is determinedr2rby relation= g = 2 , which means v
13、= =const.v2rrD2. The energy of SBH in this gravitational eld isM2E =+ U2=and= g(r)M = M2 . SodUdEdU dtdU da da dt M2 da .=daadta dtUsing the result of A2 we havedEdtGM 2 log ,2 (r)2= Fv = 4G Mlog = Dfva2and the answer is(11)da dtGM log = a4D3. To estimate one can assume that SBHs form a binary when
14、the mass of stars sphere of radius a equals to M :2aide them(a) = M,GGM2so a1 = 11 pc.D4. Integrating the equation (11) we have22a aGM log 01=T12and using that a1 a0 we havea2 02GM ln T1 = 0.12 Gy.D5. Total energy losses are caused by gravitational slingshot and gravitational waves emission, sodEG2M
15、 264G4M 5(12)=dt4G2M 2145c5a564G4M 55c5a5Energy losses due to GW dominates wheni.e. a a where2256 G2M 3 .5a2 =5c51Numerical answers are 1 = 6 103MS/pc3 and a2 = 0.026pc.D6. For rough approximation it can be considered that at the slingshot stage losses are due to slingshot only, so T2 is calculated analogiously to B5:T2 = 0.27 GyGa2And at the GW emission stage losses ar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年液压电磁阀项目规划申请报告模式
- 2025年Γ-FE2O3项目立项申请报告
- 2024-2025学年延安市宜川县数学三年级第一学期期末调研试题含解析
- 2025年多协议通信适配器项目规划申请报告模板
- 2024-2025学年夏邑县三年级数学第一学期期末学业水平测试模拟试题含解析
- 2024-2025学年文山壮族苗族自治州丘北县三年级数学第一学期期末复习检测模拟试题含解析
- 2024-2025学年潍坊市寒亭区三上数学期末综合测试模拟试题含解析
- 成都2024年四川成都市教育局所属事业单位招聘高层次人才13人笔试历年典型考点(频考版试卷)附带答案详解
- 关于工程建筑实习报告合集九篇
- 员工工作自我鉴定15篇
- 危险化学品安全周知卡氧气
- 甲状腺功能减退症(11)讲课教案
- 钻孔灌注桩后注浆施工方案(最全版)
- 电瓶车供货服务方案(完整版)
- 常用仪表缩写字母
- 政工干部年度述职报告
- 1000MW电厂水处理DCS控制系统设计
- 灌溉渠施工方案
- 蓝田股份会计造假案例
- 《职业健康培训》
- 装配式支吊架项目可行性研究报告写作范文
评论
0/150
提交评论