新人教版九年级上册圆的复习(课堂PPT)_第1页
新人教版九年级上册圆的复习(课堂PPT)_第2页
新人教版九年级上册圆的复习(课堂PPT)_第3页
新人教版九年级上册圆的复习(课堂PPT)_第4页
新人教版九年级上册圆的复习(课堂PPT)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24章圆复习,2020/6/9,2,本章知识结构图,圆的基本性质,圆,圆的对称性,弧、弦圆心角之间的关系,同弧上的圆周角与圆心角的关系,与圆有关的位置关系,正多边形和圆,有关圆的计算,点和圆的位置关系,切线,直线和圆的位置关系,三角形的外接圆,三角形内切圆,等分圆,弧长,扇形的面积,圆锥的侧面积和全面积,圆的定义(运动观点),在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作O,读作“圆O”,圆的定义辨析,篮球是圆吗?圆必须在一个平面内以3cm为半径画圆,能画多少个?以点O为圆心画圆,能画多少个?由此,你发现半径和圆心分别有什么作用?半径确定圆的大小;圆心确定圆的位置圆是“圆周”还是“圆面”?圆是一条封闭曲线圆周上的点与圆心有什么关系?,点与圆的位置关系,圆是到定点(圆心)的距离等于定长(半径)的点的集合。圆的内部是到圆心的距离小于半径的点的集合。圆的外部是到圆心的距离大于半径的点的集合。,一、垂径定理,AM=BM,重视:模型“垂径定理直角三角形”,若CD是直径,CDAB,1.定理垂直于弦的直径平分弦,并且平分弦所的两条弧.,2、垂径定理的逆定理,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.,垂径定理及推论,直径(过圆心的线);(2)垂直弦;(3)平分弦;(4)平分劣弧;(5)平分优弧.,知二得三,注意:“直径平分弦则垂直弦.”这句话对吗?(),错,在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.,如由条件:,AB=AB,OD=OD,AOB=AOB,二、圆心角、弧、弦、弦心距的关系,知一得三,三、圆周角定理及推论,90的圆周角所对的弦是.,定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧所对的圆心角的一半.,推论:直径所对的圆周角是.,直角,直径,判断:(1)相等的圆心角所对的弧相等.(2)相等的圆周角所对的弧相等.(3)等弧所对的圆周角相等.,(),(),(),1、如图1,AB是O的直径,C为圆上一点,弧AC度数为60,ODBC,D为垂足,且OD=10,则AB=_,BC=_;2、已知、同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与AC之间的关系为();A.AB=2ACB.AB2ACD.不能确定3、如图2,O中弧AB的度数为60,AC是O的直径,那么BOC等于();A150B130C120D60图1图2,40,B,C,四、点和圆的位置关系,不在同一直线上的三个点确定一个圆(这个三角形叫做圆的内接三角形,这个圆叫做三角形的外接圆,圆心叫做三角形的外心),圆内接四边形的性质:(1)对角互补;(2)任意一个外角都等于它的内对角,反证法的三个步骤:1、提出假设2、由题设出发,引出矛盾3、由矛盾判定假设不成立,肯定结论正确,1、O的半径为R,圆心到点A的距离为d,且R、d分别是方程6x80的两根,则点A与O的位置关系是()A点A在O内部B点A在O上C点A在O外部D点A不在O上2、M是O内一点,已知过点M的O最长的弦为10cm,最短的弦长为8cm,则OM=_cm.3、圆内接四边形ABCD中,ABCD可以是()A、1234B、1324C、4231D、4213,D,3,D,练:有两个同心圆,半径分别为和r,是圆环内一点,则的取值范围是.,rOPR,1、直线和圆相交,dr;,dr;,2、直线和圆相切,3、直线和圆相离,dr.,五.直线与圆的位置关系,切线的判定定理,定理经过半径的外端,并且垂直于这条半径的直线是圆的切线.,C,D,O,A,如图OA是O的半径,且CDOA,CD是O的切线.,判定切线的方法:,()定义,()圆心到直线的距离d圆的半径r,()切线的判定定理:经过半径的外端,并且垂直于这条半径的直线是圆的切线.,切线的判定定理的两种应用,1、如果已知直线与圆有交点,往往要作出过这一点的半径,再证明直线垂直于这条半径即可;2、如果不明确直线与圆的交点,往往要作出圆心到直线的垂线段,再证明这条垂线段等于半径即可,切线的性质定理,圆的切线垂直于过切点的半径.,CD切O于,OA是O的半径,C,D,O,A,CDOA.,切线的性质定理可理解为,如果一条直线满足以下三个性质中的任意两个,那么第三个也成立。经过切点、垂直于切线、经过圆心。,如,任意两个,1、两个同心圆的半径分别为3cm和4cm,大圆的弦BC与小圆相切,则BC=_cm;2、如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为_;3、下列四个命题中正确的是()与圆有公共点的直线是该圆的切线;垂直于圆的半径的直线是该圆的切线;到圆心的距离等于半径的直线是该圆的切线;过圆直径的端点,垂直于此直径的直线是该圆的切线A.B.C.D.,36,C,一、判断。1、三角形的外心到三角形各边的距离相等;()2、直角三角形的外心是斜边的中点()二、填空:1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆半径,内切圆半径;2、等边三角形外接圆半径与内切圆半径之比三、选择题:下列命题正确的是()A、三角形外心到三边距离相等B、三角形的内心不一定在三角形的内部C、等边三角形的内心、外心重合D、三角形一定有一个外切圆,6.5cm,2cm,2:1,C,四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三角形的面积为_,30cm,A,B,C,O,七.三角形的外接圆和内切圆:,A,B,C,I,三角形内切圆的圆心叫三角形的内心。,三角形外接圆的圆心叫三角形的外心,三角形三边垂直平分线的交点,三角形三内角角平分线的交点,到三角形各边的距离相等,到三角形各顶点的距离相等,锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.,三角形的外心是否一定在三角形的内部?,从圆外一点向圆所引的两条切线长相等;并且这一点和圆心的连线平分两条切线的夹角.,切线长定理及其推论:,直角三角形的内切圆半径与三边关系.,三角形的内切圆半径与圆面积.,PA,PB切O于A,BPA=PB1=2,1.如图:圆O中弦AB等于半径R,则这条弦所对的圆心角是,圆周角是.,60度,30或150度,2:已知ABC三点在圆O上,连接ABCO,如果AOC=140,求B的度数,3.平面上一点P到圆O上一点的距离最长为6cm,最短为2cm,则圆O的半径为_.,D,解:在优弧AC上定一点D,连结AD、CD.AOC=140D=70B=18070=110,2或4cm,4.怎样要将一个如图所示的破镜重圆?,A,B,C,P,5、如图,AB是O的任意一条弦,OCAB,垂足为P,若CP=7cm,AB=28cm,你能帮老师求出这面镜子的半径吗?,O,7,14,综合应用垂径定理和勾股定理可求得半径,6.如图:AB是圆O的直径,BD是圆O的弦,AC=AB,BD与CD的大小有什么关系?为什么?,补充:若B=70,则DOE=,E,40,7、如图,AB是圆O的直径,圆O过AC的中点D,DEBC于E证明:DE是圆O的切线.,2020/6/9,33,三.正多边形:,2.半径:正多边形外接圆的半径叫做这个正多边形的半径,.中心:一个正多边形外接圆的圆心叫做这个正多边形的中心,3.中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角,4.边心距:中心到正多边形一边的距离叫做这个正多边形的边心距,O,2020/6/9,34,3正多边形和圆,(1).有关概念(2).常用的方法(3).正多边形的作图,E,F,C,D,.,边心距r,半径R,中心角,O,边,O,A,B,C,R,d,a,2020/6/9,35,1.圆的周长和面积公式,2.弧长的计算公式,3.扇形的面积公式,或,四.圆中的有关计算:,周长C=2r,面积s=r2,2020/6/9,36,4.圆柱的展开图:,r,h,S侧=2rh,S全=2rh+2r2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论