2020版高考数学人教版理科一轮复习课时作业:17 导数与函数的零点问题 Word版含解析.doc_第1页
2020版高考数学人教版理科一轮复习课时作业:17 导数与函数的零点问题 Word版含解析.doc_第2页
2020版高考数学人教版理科一轮复习课时作业:17 导数与函数的零点问题 Word版含解析.doc_第3页
2020版高考数学人教版理科一轮复习课时作业:17 导数与函数的零点问题 Word版含解析.doc_第4页
2020版高考数学人教版理科一轮复习课时作业:17 导数与函数的零点问题 Word版含解析.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业17导数与函数的零点问题1已知f(x)ax2(b1)xlnxb,曲线yf(x)在点P(e,f(e)处的切线方程为2xy0.(1)求f(x)的解析式;(2)研究函数f(x)在区间(0,e4内的零点的个数解:(1)由题知得f(x)x2(e1)xlnxe.(2)x2(e1)xlnxe0x(e1)lnx0,x(0,e4设g(x)x(e1)lnx,x(0,e4,则g(x)1.由g(x)0得x11,x2e,当x(0,1)时,g(x)0,当x(1,e)时,g(x)0,所以g(x)在(0,1)上单调递增,在(1,e)上单调递减,在(e,e4上单调递增极大值g(1)1e0,极小值g(e)20,g(e4)e44(e1),4(e1)2.742.546236,g(e4)0.综上,g(x)在(0,e4内有唯一零点,因此,f(x)在(0,e4内有唯一零点2(2019郑州第一次质量预测)已知函数f(x)lnx,aR且a0.(1)讨论函数f(x)的单调性;(2)当x,e时,试判断函数g(x)(lnx1)exxm的零点个数解:(1)f(x)(x0),当a0恒成立,函数f(x)在(0,)上单调递增;当a0时,由f(x)0,得x,由f(x)0,得0x,函数f(x)在(,)上单调递增,在(0,)上单调递减综上所述,当a0时,函数f(x)在(,)上单调递增,在(0,)上单调递减(2)当x,e时,函数g(x)(lnx1)exxm的零点,即当x,e时,方程(lnx1)exxm的根令h(x)(lnx1)exx,h(x)(lnx1)ex1.由(1)知当a1时,f(x)lnx1在(,1)上单调递减,在(1,e)上单调递增,当x,e时,f(x)f(1)0.lnx10在x,e上恒成立h(x)(lnx1)ex1010,h(x)(lnx1)exx在x,e上单调递增h(x)minh()2e,h(x)maxe.当me时,函数g(x)在,e上没有零点;当2eme时,函数g(x)在,e上有一个零点3(2019辽宁五校联考)已知函数f(x)x2alnx(aR)(1)若f(x)在x2处取得极值,求曲线yf(x)在点(1,f(1)处的切线方程;(2)当a0时,若f(x)有唯一的零点x0,求x0注:x表示不超过x的最大整数,如0.60,2.12,1.52.参考数据:ln20.693,ln31.099,ln51.609,ln71.946.解:(1)f(x)x2alnx,f(x)(x0),由题意得f(2)0,则2232a20,a7,经验证,当a7时,f(x)在x2处取得极值,f(x)x27lnx,f(x)2x,f(1)7,f(1)3,则曲线yf(x)在点(1,f(1)处的切线方程为y37(x1),即7xy100.(2)令g(x)2x3ax2(x0),则g(x)6x2a,由a0,g(x)0,可得x,g(x)在(0,)上单调递减,在( ,)上单调递增由于g(0)20,故当x(0,)时,g(x)0,又g(1)a1,则g(x0)0,f(x0)0,可得2lnx010.令h(x)2lnx1(x1),易知h(x)在(1,)上单调递增,由于h(2)2ln220.70,故x0(2,3),x02.4(2019南宁、柳州联考)已知函数f(x)lnxax2(2a)x.(1)讨论f(x)的单调性;(2)设f(x)的两个零点分别是x1,x2,求证:f()0,则f(x)在(0,)上单调递增;当a0时,若x(0,),则f(x)0,若x(,),则f(x)0,且f(x)在(0,)上单调递增,在(,)上单调递减,不妨设0x1x2,f()x1x2,故要证f()即可构造函数F(x)f(x)f(x),x(0,),f(x)f(x)f(x)f(x)f(x),x(0,),f(x)0,F(x)在(0,)上单调递增,F(x)F()f()f()0,即f(x)f(x),x(0,),又x1,x2是函数f(x)的两个零点且0x1x2,f(x1)f(x2)x1,x1x2,得证5(2019西安八校联考)已知函数f(x)x,g(x)f(x)sinx(R)在区间1,1上单调递减(1)求的最大值;(2)若g(x)sin1恒成立,即(t1)t2sin110(1)恒成立,令h()(t1)t2sin11(1),要使h()0恒成立,则需又t2tsin10恒成立,t1,故t的取值范围为(,1(3)x22exm,令f1(x),f2(x)x22exm,f1(x),当x(0,e)时,f1(x)0,即f1(x)单调递增;当xe,)时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论