



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.1 综合法和分析法(一) 学习目标 1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 会用综合法证明问题;了解综合法的思考过程.3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 学习过程 一、课前准备(预习教材P45 P47,找出疑惑之处)复习1:两类基本的证明方法: 和 . 复习2:直接证明的两中方法: 和 .二、新课导学 学习探究探究任务一:综合法的应用问题:已知,求证:.新知:一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法.反思:框图表示: 要点:顺推证法;由因导果. 典型例题例1已知,求证:变式:已知,求证:.小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明.例2 在ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列. 求证:为ABC等边三角形.变式:设在四面体中,D是AC的中点.求证:PD垂直于所在的平面.小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来. 动手试试练1. 求证:对于任意角,练2. 为锐角,且,求证:. (提示:算)三、总结提升 学习小结 综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q. 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题. 知识拓展综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2. 如果为各项都大于零的等差数列,公差,则( )A B C D3. 设,则( )A B C D4.若关于的不等式的解集为,则的范围是_ .5. 已知是不相等的正数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文山职业技术学院《纪录片解析》2023-2024学年第二学期期末试卷
- 温州医科大学《跨文化管理》2023-2024学年第二学期期末试卷
- 江苏省镇江句容市2025届中考英语试题模拟试卷(6)英语试题含答案
- 六安市重点中学2025年初三阶段性测试(六)A卷英语试题试卷含答案
- 九江职业技术学院《大气污染控制工程》2023-2024学年第二学期期末试卷
- 正蓝旗2025年数学四下期末质量检测试题含解析
- 内江师范学院《数学课程论与教学教法》2023-2024学年第二学期期末试卷
- 华中师范大学《冶金物理化学》2023-2024学年第二学期期末试卷
- 枣庄市滕州市2024-2025学年三下数学期末学业质量监测模拟试题含解析
- 四川省眉山县市级名校2025年5月中考三轮模拟试卷化学试题含解析
- 电磁感应:“棒-导轨”模型4:单棒-有外力发电式
- 2025年公务员考试江西省(面试)试题及答案指导
- 江苏省期无锡市天一实验校2025届初三下学期第一次模拟考试英语试题含答案
- T∕CFA 0308053-2019 铸造企业清洁生产要求 导则
- 中国盐业集团有限公司 笔试 内容
- 全过程工程咨询投标方案(技术方案)
- DL∕T 1051-2019 电力技术监督导则
- T-CPIA 0056-2024 漂浮式水上光伏发电锚固系统设计规范
- 2024广东深圳市龙岗区总工会招聘社会化工会工作者及事宜笔试历年典型考题及考点剖析附答案带详解
- 公司供应商风险管理制度
- 2024北京市大兴初二(下)期中数学试卷及答案
评论
0/150
提交评论