


免费预览已结束,剩余44页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
34生活中的优化问题举例,1知识与技能了解导数在实际问题中的应用,对给出的实际问题,如使利润最大、效率最高、用料最省等问题,体会导数在解决实际问题中的作用2过程与方法能利用导数求出某些特殊问题的最值,本节重点:利用导数知识解决实际中的最优化问题本节难点:将实际问题转化为数学问题,建立函数模型解决最优化问题的关键是建立函数模型,因此需先审清题意,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的因变量y与自变量x,把实际问题化为数学问题,即列出函数关系式yf(x),根据实际问题确定yf(x)的定义域,解应用题的思路和方法解应用题首先要在阅读材料、理解题意的基础上把实际问题抽象成数学问题,就是从实际问题出发,抽象概括,利用数学知识建立相应的数学模型,再利用数学知识对数学模型进行分析、研究,得到数学结论,然后再把数学结论返回到实际问题中去,其思路如下:,(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问题的主要关系;(2)建模:将文字语言转化成数学语言,利用数学知识,建立相应的数学模型;(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;(4)对结果进行验证评估,定性定量分析,做出正确的判断,确定其答案注意:实际应用中,准确地列出函数解析式并确定函数定义域是关键,生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为,优化问题,例1在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?,解析设箱高为xcm,则箱底边长为(602x)cm,则得箱子容积V是x的函数,V(x)(602x)2x(00,当10x30时,V(x)0.当x10时,V(x)取极大值,这个极大值就是V(x)的最大值V(10)16000(cm3),答:当箱子的高为10cm,底面边长为40cm时,箱子的体积最大,最大容积为16000cm3.点评在解决实际应用问题中,如果函数在区间内只有一个极值点,那么只需根据实际意义判定是最大值还是最小值不必再与端点的函数值进行比较,已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y4x2在x轴上方的曲线上,求这个矩形面积最大时的长和宽解析如图所示,设出AD的长,进而求出AB,表示出面积S,然后利用导数求最值设AD2x(0x2),则ABy4x2,则矩形面积为S2x(4x2)(0x2),即S8x2x3,,例2将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截法使正方形与圆面积之和最小?,点评该题中涉及的量较多,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的,已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆柱的高h的值,例3某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0x1),则出厂价相应提高的比例为0.7x,年销售量也相应增加已知年利润(每辆车的出厂价每辆车的投入成本)年销售量,解析(1)由题意得:本年度每辆车的投入成本为10(1x);出厂价为13(10.7x),年销售量为5000(10.4x)因此本年度的年利润为:p13(10.7x)10(1x)5000(10.4x)(30.9x)5000(10.4x)1800 x21500 x15000(0x1),(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数关系式;(2)为获最大日盈利,该厂的日产量应定为多少件?,例4甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?,一、选择题1三次函数当x1时,有极大值4;当x3时,有极小值0,且函数过原点,则此函数是()Ayx36x29xByx36x29xCyx36x29xDyx36x29x答案B,答案A解析f(x)3x23b3(x2b),令f(x)0,即x2b0,,答案D,答案C,二、填空题5面积为S的一切矩形中,其周长最小的是_,故面积为S的一切矩形中,其周长最小的是以为边长的正方形,6函数f(x)x2(2x)的单调递减区间是_,三、解答题7用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接成水箱问:水箱底边的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025网络安全设备租赁合同
- “畅游”农村连锁网络代购超市创业计划
- 《供热系统优化技术》课件
- 《分泌物与体液检测》课件
- 《中式烹饪原料-红枣》课件
- 2025商业店铺买卖合同范本 商业店铺买卖合同
- 购房定购终止协议书
- 种植合作框架协议书
- 2025江西省绿茶订购合同范本
- 工地班车出租合同协议
- 马原演讲之谁是历史的创造者
- 《人类征服的故事》读后感
- 2024年中国邮政航空有限公司招聘笔试参考题库含答案解析
- 硫酸艾沙康唑胶囊-药品临床应用解读
- 《物流成本管理 第4版》各章思考题及习题答案
- 学生社交技巧与人际关系的培养
- DLT817-2014 立式水轮发电机检修技术规程
- 带式输送机计算
- 饮食与免疫:如何通过饮食提高免疫力
- 《我不是药神》剧本
- JJF 1101-2019《环境试验设备温度、湿度校准规范》规程
评论
0/150
提交评论