



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,如有侵权请联系网站删除附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质1线性定理齐次性叠加性2微分定理一般形式初始条件为0时3积分定理一般形式独创的;新颖的初始条件为0时sign n. 牌示;标记;符号4Ottawa n. 渥太华(加拿大首都)延迟定理(或称域平移定理)5packet n. 小包;小盒衰减定理(或称域平移定理)6终值定理n. 投票;选票;表决7初值定理boil vi. (指液体)沸腾;(水)开8卷积定理可靠的非典型性肺炎表A-2 常用函数的拉氏变换和z变换表序号 拉氏变换E(s)时间函数e(t)Z变换E(z)11(t)1234t5 6789101112131415用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设是的有理真分式 ()式中系数,都是实常数;是正整数。按代数定理可将展开为部分分式。分以下两种情况讨论。 无重根这时,F(s)可展开为n个简单的部分分式之和的形式。 (F-1)式中,是特征方程A(s)0的根。为待定常数,称为F(s)在处的留数,可按下式计算: (F-2)或 (F-3)式中,为对的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 (F-4) 有重根设有r重根,F(s)可写为=式中,为F(s)的r重根,, 为F(s)的n-r个单根;其中,, 仍按式(F-2)或(F-3)计算,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高一上册地理试卷及答案
- 高阳县初中考试试卷及答案
- 防震减灾与防溺水课件
- 上海旅游境外合同样本
- 防雾湿巾培训课件
- 产品制作合同样本
- 充电宝订购合同标准文本
- 修建小型水库承包合同样本
- 他人公司出资合同样本
- 业务合同样本支付时间
- 吉林省吉林市2024-2025学年高三下学期3月三模试题 生物 含答案
- 2025年陕西农业发展集团有限公司(陕西省土地工程建设集团)招聘(200人)笔试参考题库附带答案详解
- 2025年03月中央社会工作部所属事业单位公开招聘11人笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年中高端女装市场趋势与前景深度分析
- 2025北京清华附中高三(下)统练一数学(教师版)
- 2025-2030中国孵化器行业市场发展前瞻及投资战略研究报告
- 5.3基本经济制度 课件 2024-2025学年统编版道德与法治八年级下册
- Unit4 Breaking Boundaries 单元教学设计-2024-2025学年高中英语外研版(2019)选择性必修第二册
- T-CCTAS 61-2023 桥梁承重缆索抗火密封综合防护技术规程
- 2025慢性阻塞性肺病(GOLD)指南更新要点解读课件
- 2024年05月湖北中国邮政储蓄银行湖北省分行春季校园招考笔试历年参考题库附带答案详解
评论
0/150
提交评论