高中数学第一章推理与证明1.2综合法与分析法课件_第1页
高中数学第一章推理与证明1.2综合法与分析法课件_第2页
高中数学第一章推理与证明1.2综合法与分析法课件_第3页
高中数学第一章推理与证明1.2综合法与分析法课件_第4页
高中数学第一章推理与证明1.2综合法与分析法课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 2综合法与分析法 1 综合法从命题的条件出发 利用定义 公理 定理及运算法则 通过演绎推理 一步一步地接近要证明的结论 直到完成命题的证明 我们把这样的思维方法称为综合法 名师点拨综合法的特点 1 综合法的特点是从 已知 看 未知 2 用P表示已知条件 已有的定义 公理 定理等 用Q表示所要证的结论 则综合法的思维过程可表示如下 3 用综合法证明题目 具有步骤严谨 逐层递进 条理清晰 易于表达的特点 做一做1 已知x y z 1 求证 x2 y2 z2 证明 x2 y2 2xy y2 z2 2yz z2 x2 2xz x2 y2 y2 z2 z2 x2 2xy 2yz 2xz 3 x2 y2 z2 x2 y2 z2 2xy 2yz 2xz 即3 x2 y2 z2 x y z 2 1 2 分析法从求证的结论出发 一步一步地探索保证前一个结论成立的充分条件 直到归结为这个命题的条件 或者归结为定义 公理 定理等 我们把这种思维方法称为分析法 名师点拨分析法的特点 1 分析法的特点是从 未知 看 需知 逐步靠拢 已知 2 用分析法书写证明过程的格式为 要证 只需证 只需证 由于 显然成立 已知 已证等 所以原结论成立 其中的关联词语不能省略 做一做2 将下面用分析法证明 ab的步骤 补充完整 要证 ab 只需证a2 b2 2ab 也就是证 即证 由于显然成立 因此原不等式成立 答案 a2 b2 2ab 0 a b 2 0 a b 2 0 思考辨析判断下列说法是否正确 正确的在后面的括号内画 错误的画 1 综合法是由因导果的顺推证法 2 分析法是执果索因的逆推证法 3 分析法的推理过程要比综合法优越 4 所有证明的题目均可使用分析法证明 探究一 探究二 探究三 规范解答 综合法的应用 例1 在 ABC中 a b c分别为内角A B C的对边 且2asinA 2b c sinB 2c b sinC 1 求证 A的大小为60 2 若sinB sinC 证明 ABC为等边三角形 分析 1 要证A的大小为60 可先从已知条件出发 利用正弦定理 将角化为边 再利用余弦定理得出角A的大小 2 要证 ABC为等边三角形 可从 1 的证明出发 将sinB sinC 转化为只含一个角的三角函数值的等式 进而求出角B或角C的大小也为60 命题得证 探究一 探究二 探究三 规范解答 证明 1 2asinA 2b c sinB 2c b sinC 2a2 2b c b 2c b c 即bc b2 c2 a2 探究一 探究二 探究三 规范解答 2 由 1 知A 60 且A B C 180 B C 120 0 B 120 30 B 30 150 B 30 90 即B 60 A B C 60 因此 ABC为等边三角形 探究一 探究二 探究三 规范解答 反思感悟综合法证明问题的思路 1 分析条件 选择方向 即分析题目的已知条件及已知与结论之间的联系 选择相关的定理 公式等 确定恰当的解题方法 2 转化条件 组织过程 即把已知条件转化成所需要的语言 主要是文字 符号 图形三种语言之间的转化 3 适当调整 回顾反思 即回顾解题过程 对部分步骤进行调整 并对一些语言进行适当修饰 反思总结解题方法的选取 探究一 探究二 探究三 规范解答 探究一 探究二 探究三 规范解答 分析法的应用 分析 本题从正面入手很难找到思路与方法 可从结论入手 利用分析法 寻找结论成立的充分条件 探究一 探究二 探究三 规范解答 而上述不等式显然成立 故原不等式成立 探究一 探究二 探究三 规范解答 反思感悟利用分析法证明不等式 1 适用范围 常用于一些条件简单 结论复杂的不等式的证明 2 证明思路 从要证明的不等式出发 逐步寻求它成立的充分条件 最后得到充分条件是已知 或已证 的不等式 3 格式要求 用分析法证明数学命题时 一定要恰当地用好 要证 只需证 即证 等词语 探究一 探究二 探究三 规范解答 只需证xy x y 1 y x xy 2 只需证 xy 2 1 x y xy x y 0 只需证 xy 1 xy 1 x y 0 只需证 xy 1 x 1 y 1 0 因为x 1 y 1 所以上式显然成立 所以原不等式成立 探究一 探究二 探究三 规范解答 综合法与分析法的综合应用 例3 已知a b c是不全相等的正数 且0 x 1 求证 分析 解决本题的关键是利用对数的运算法则和对数函数的性质转化为证明整式不等式 探究一 探究二 探究三 规范解答 探究一 探究二 探究三 规范解答 反思感悟综合法与分析法的综合应用 1 在实际解题过程中 常常是先用分析法寻找解题思路 即从结论入手 逐步缩小范围 进而确定我们所需要的 因 再用综合法有条理地表述解题过程 2 对于较复杂的问题 在解题过程中 把分析法和综合法有机地统一起来 一方面从问题的已知条件出发 用综合法经逻辑推理导出中间结果 另一方面从问题的结论出发 用分析法回溯到中间 即推出同一个中间结果 从而沟通思路使问题得到解决 探究一 探究二 探究三 规范解答 变式训练3设f x ax2 bx c a 0 若f x 1 与f x 的图像关于y轴对称 求证 f为偶函数 探究一 探究二 探究三 规范解答 用分析法证明不等式成立 典例 12分 在某两个正数m n之间插入一个数x 使m x n成等差数列 插入两个数y z 使m y z n成等比数列 求证 x 1 2 y 1 z 1 探究一 探究二 探究三 规范解答 探究一 探究二 探究三 规范解答 即证y3 z3 yz y z 成立 9分只需证y2 yz z2 yz 即证 y z 2 011分因为 y z 2 0显然成立 所以 x 1 2 y 1 z 1 12分 解题反思实际解题时 综合使用分析法与综合法 即从 未知 想 需知 分析 从 已知 推 可知 综合 双管齐下 两面夹击 找到沟通已知条件和结论的途径 本例中若得不出2x 就无法实现等价转化 另外在应用分析法解题时 语言 步骤要完整 规范 避免逻辑性混乱 减少失分 探究一 探究二 探究三 规范解答 变式训练如图 在四面体P ABC中 PA PB PC两两垂直 且PH 底面ABC于点H 求证 H是 ABC的垂心 证明 连接AH BH 要证H是 ABC的垂心 只需证BC AH 且AC HB 只需证BC 平面PHA 且AC 平面PHB 只需证BC PH 且BC PA AC PH 且AC PB 因为PH 底面ABC 所以PH BC PH AC成立 故只需证BC PA 且AC PB即可 只需证PA 平面PBC PB 平面PAC 只需证PA PB 且PA PC PB PA 且PB PC 因为PA PB PC两两垂直 上式显然成立 所以原结论成立 即H是 ABC的垂心 12345 1 对于任意角 都有cos4 sin4 cos2 的证明过程 cos4 sin4 cos2 sin2 cos2 sin2 cos2 sin2 cos2 应用了 A 分析法B 综合法C 综合法与分析法结合使用D 间接证法解析 证明过程是利用已有的公式顺推得到要证明的等式 因此是综合法 答案 B 12345 2 已知f x ax 1 0 a 1 若x1 x2 R 且x1 x2 则 答案 D 12345 A aB bC cD 不能确定 答案 C 12345 12345 只需证 x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论