免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3 二次根式的运算课时1 二次根式的乘除运算【教学目标】 1了解二次根式的运算法则是由二次根式的性质得到的 2会进行简单的二次根式的乘除运算【教学重难点】重点:二次根式的运算法则难点:将二次根式的运算结果化成最简二次根式.【教学过程】 一、 复习引入1.二次根式有哪些性质?2.化简下列二次根式:,.3.计算:, .教师根据二次根式的性质公式引导学生思考二次根式的乘除运算,进而引入新课.二、探究新知1.例题教学例 1 计算:; ; .分析:(2)中一个二次根式的被开方数是带分数要先化成假分数,再进行运算.解:(1)(2)(3) 2.二次根式乘除运算的一般步骤:(1)运用法则,转化为根号内的实数运算;(2)完成根号内相乘、相除运算;(3)化简二次根式.3.教师引导学生学习教材P13例2.二、 巩固练习教材P14课内练习第3题,学生完成后,出示答案.三、 课堂小结(1)二次根式的乘除运算法则:(2) 注意:二次根式的乘除运算中被开方数是带分数要先化成假分数再进行运算.二次根式运算的结果,如果能够化简,那么应把它化简为最简二次根式.(3) 运用二次根式解决实际问题.四、 布置作业教材P14作业题第1,2,4,6题.课时2 二次根式的四则混合运算【教学目标】1会进行简单的二次根式的四则混合运算 2通过整式运算的某些法则在二次根式四则运算中的运用,体验迁移、化归等数学思想【教学重难点】重点:二次根式的四则混合运算难点:二次根式的四则混合运算的运算顺序【教学过程】 一、课题引入 并回答问题:(1)你是运用什么知识解决上面的计算?(学生回答后,教师板书解题过程)(2)上题中的a若用替代,即: 你认为运算是否正确?教师归纳我们发现整式中的合并同类项法则在二次根式的运算中也适用. 猜想: 那么整式中的其他运算法则或运算律或运算顺序是否也适用于二次根式的运算呢? (教师作肯定回答后) 导出课题: 二次根式的加减运算.二、探究新知1. 二次根式的加减运算教材P15例3 化简: .启发提问: 这是一道二次根式的什么运算?能否适用合并同类项的方法进行合并? 上面的二次根式是否还可以化简?请同学们试一下,再回答问题 ( 最后教师板书解题过程)归纳: 二次根式加减运算之前,应先化简二次根式,再把所含二次根式完全相同的项合并成一项.2.练一练: 化简: 3.二次根式的四则混合运算例 计算: ; ; . 启发提问: 第题有哪些运算?运算顺序是什么?系数-3和2如何处理? 第题可否用运算律?用到哪些运算律? 第题能否先做括号内的?(教师板书解题过程) 学以致用: 计算: ; .教师带领学生一起学习教材例题.教材P15例5 计算: ; . 提 问 : 这两题的计算与整式中的什么运算类似? 第题又有什么特征? (教师板书解题过程)三、巩固练习计算: ; .四、课堂小结二次根式的加减运算:先化简二次根式,再合并同类二次根式.2.二次根式的四则混合运算顺序:先算乘除,再算加减,有括号的先算括号里面的.五、 布置作业教材P16作业题.课时3 二次根式及其运算的应用【教学目标】1会运用二次根式解决简单的实际问题 2进一步体验二次根式及其运算的实际意义和应用价值【教学重难点】重难点:二次根式及其运算的实际应用【教学过程】 一、课题引入二次根式的知识在实际生活中有广泛的用途.如图,我们规定斜坡的铅直高h与水平长度l的比叫做坡比(或坡度),即坡比已知斜坡的坡比为3:4,且其高CE=2 dm,宽AB=1 dm.一只蚂蚁从A点爬到C点,最短路程是多少?说明:设计本题有以下目的:介绍预备知识“坡比”;激发学生的学习兴趣;会用二次根式表示未知量.在RtBCE中,BC=.二、应用举例例1(教材P17例6)如图,扶梯AB的坡比为1:0.8,滑梯CD的坡比为1:1.6,AE= m,BC=CD.一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,经过的总路程是多少米(要求先化简,再取近似值,结果精确到0.01 m)?分析:由题意知BE:AE=1:0.8,AE= m,所以BE=(m).因为BE=CF=m,CF:FD=1:1.6,所以FD=(m).由勾股定理,得AB=(m),CD=(m).因为BC=CD,所以BC=(m).所以这个男孩经过的总路程约为AB+BC+CD=7.71(m).说明:以上的分析过程显示了求解问题的格式化的程序,学生必须养成这样的思维习惯.练习一: (教材P19作业题T3)例2(教材P17例7)如图是一张等腰直角三角形彩色纸,AC=BC=40 cm.将斜边上的高CD四等分,然后截出3张宽度相等的长方形纸条. 分别求出3张长方形纸条的长度. 若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如图,正方形美术作品的面积为多少平方厘米 ?图E1E2E3F1F2F3G1G2G3 图CAB分析:如图,从已知能得到什么?在RtABC中,CDAB,AC=BC=40 cm,易求得AB和CD的长(让学生求),则CE3=E3F3=F3G3=G3D = CD,纸条的宽度可求.怎样求纸条的长度?纸条的总长度=E1E2+F1F2+G1G2 ,怎样求E1E2(让学生想一想)? F1F2和G1G2 呢?由等腰三角形的性质知E1E2 =2CE3,F1F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年医院个人工作总结范文
- 物联网认证技术发展趋势-洞察分析
- 虚拟现实时尚产品市场调研-洞察分析
- 体育课程资源整合创新-洞察分析
- 虚拟现实在呼叫中心团队协作中的应用-洞察分析
- 盐水浴在慢性疼痛治疗-洞察分析
- 野生植物种子资源保存技术-洞察分析
- 隐私保护区块链应用案例分析-洞察分析
- 物联网在智能家居中的应用-洞察分析
- 营养基因组与新型饲料开发-洞察分析
- 产品代发合同范例
- 《城市轨道交通票务管理》-实训计划
- 2024广东省基本医疗保险门诊特定病种业务经办规程-申请表
- 2023年辅导员职业技能大赛试题及答案
- 讲师与教育平台合作合同
- 2025届江苏省丹阳市丹阳高级中学高一数学第一学期期末统考试题含解析
- 汽车保险与理赔课件 3.4认识新能源汽车车上人员责任保险
- GB/T 33629-2024风能发电系统雷电防护
- 建筑工程施工现场安全检查手册
- 小学英语语法练习模拟试卷
- 高标准农田建设项目安全文明施工方案
评论
0/150
提交评论