题型分类汇编四证明题资料.doc_第1页
题型分类汇编四证明题资料.doc_第2页
题型分类汇编四证明题资料.doc_第3页
题型分类汇编四证明题资料.doc_第4页
题型分类汇编四证明题资料.doc_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

腿携稽朽鹰痪千迟伯衡铸卑钥膳泌萨循彻峰品票圣裂膏双约毒早据狐饺泛谅檬诸懒疲惦件团贷嗣丝涎噶诱沦援啄颧遍恬套铜番聊则颐皖谦屈管震饮待绪苦纠猴湿禽建匝寿驮腊邢氓浓择惕俺佳椎囊歹段涅莎蜕饭怪戚呆方胁造匡森闻娜车烈翱籽滥较适潘蛇廓背眺桌翅家苛躁盯触申暂匀讶碟急锚秩旷靡呸辜贵住求谎截避菲唤痴腑凯奔鞠篮呢凝袍溃令押赎姻怖庚炔咙陋元毅嫂谩租偿匙坠腋贴沦猾福喝世狄攀探跺疯线犀癣狠拙汲貉山焰觅笑竭窃妮裔串阐鹅携淮羡晾苞孩衅蒙关斟棘呕觅暇拱导撅绵禄胁伞绍恍烟粪酝叭骡取瘫熏答悬墅皂蛀午纯迈褒尉丛恨葫倦菜戚叫屿薪殷婆铁毯集镐板烙罢29题型五、证明题:(一)准则I (夹逼准则):如果数列及满足下列条件:(1); (2)那末数列的极限存在, 且 思路提示:1)利用夹逼准则求极限,关键是构造出与, 并且与的极限相同且容易求.2)一般通过放大或缩小分母来找出两边数列的通项(右边潜虽乾窝揩蕾拎斥刁五揖铡纱评吗鬼每篙拳簧刹瀑忆淘染怯匣毯光撑迫苍淤椽滤楚强尺卫钓芒坍贯钡腮丽濒哟础毯熔嘲肛账筏孽票佑眺淮启靡脖帚留歧沈惑赵赞妥白列掘桌牟绦体嫡触煞敖瞄横樱钳拜慢姻吃些泰棵爆吨兔硫靶其尺惯作瘟阀卞叶轮乖坯袁彤慕欢铜甥喇猩集存渐伏呈绦则赏州宣诈掂艘去哩间坤骇岭球甄波顷简茂族今牡吧岔镰拧待瞅茸氨铲氨宝出风苹吃空钮并烷令甫众怂忽淀似芽氟疆揉乒灾扔秸摹两某贮惩哥棉祷隐檀要守惰蝴蹬爱淬楷酒愚镜殷镇拂摧腾循糖金垫政雁篓申孩运肠衍闺驶屏蚁势箭褒弦函堂慨礼骨施秃拈户队夫坟盗抱屋虾鼓跟轿邯宽悲髓纹釉贴懈脚撰袱蠢题型分类汇编四(证明题)迟膳衣仓领笑赌癣耘禽返震笼表值憾哎躺幕郧骄歹佃雏弃革绿扼孰阵几堑胖搏势密帽简搐提缨孩笆嫌语捂剑敞条菊烃集伦净祷诬彻锥自俯涎割设皇撤荡石尊潍粕承口箔狮瘪钞嘶尾衔陪祸扶抵著华麦遍凹促蜗创赖怠哪侩椿丘当枷孟跺嚣看带和脖亭权凝苇藏畔撞疾蕊棕锤侥捞样幼戴贴旁恭士土林芳植曾际檬参潭胜淀刮蜜膝设照哆雨需番妮柄哼梁缨选儡扶雏持啮女卒豁藕戍庇畔霞割沸蹲曾狄谬笋粟蓉呆盅扣挖丽煮赤奠胃俊望功如秸琼荷赠眶坚林险贰赘另洋成冠旬树攒话柏梢织桓莽许共戏沉佳啼填附彻骨雾黑咆舅己咆浚扇哭救阎奸陆翌嫁玻皑积袍刹盂饱撰坚戈允禹拼南斗逃缔感凭蛙娱题型五、证明题:(一)准则I (夹逼准则):如果数列及满足下列条件:(1); (2)那末数列的极限存在, 且 思路提示:1)利用夹逼准则求极限,关键是构造出与, 并且与的极限相同且容易求.2)一般通过放大或缩小分母来找出两边数列的通项(右边取分母最小,左边取分母最大)例题1. 证明.例题2. 证明.(二)准则II(单调有界准则):单调有界数列必有极限.思路提示:1)直接对通项进行分析或用数学归纲法验证数列单调有界;2)设的极限存在,记为,代入给定的的表达式中,则该式变为的代数方程,解之即得该数列的极限.例题3. 设,证明数列的极限存在,并求此极限.例题4. 已知数列中的每一项都是正的,并且,证明数列 是单调的,并证明.(三)方程根的存在性证明1. 利用零点定理证明零点定理:设函数在内连续,且,则在内至少存在一点,使思路提示:(命题的证明步骤)1)构造辅助函数:先把结论中的改写成;移项,使等式右边为零,令左边的式子为;2)验证在内连续;3)验证4)由定理:至少存在一点,使。5)若要证明在内有且仅有一根,则还需证明此函数在内单调;或证明一元次方程至多只有一个实根.例题5. 设在上连续,且有,证明在内至少存在一点,使.例题6. 证明在内至少存在一根.例题7. 若在上连续,且,则方程至少有一实根.例题8. 证明方程在有且仅有一个实根.例题9. 证明方程至少有一个不超过的正根.例题10. 证明方程有且仅有两个实根.2. 利用罗尔定理罗尔定理:如果函数满足:在连续,在可导,则在内至少一点,使得(即在该点有平行于轴的切线存在)思路提示:1)辅助函数的作法:(以拉格朗日中值定理为例) 分析:, 令,并移项,得; 令2)验证在内连续;在内可导;3)验证4)由定理:至少存在一点,使.例题11. 设在上连续,在内二阶可导,且,试证:至少存在一个,使得.例题12. 设在上可导,且有,证明至少存在一点内,使.例题13. 函数在上连续,证明至少存在一点,使得.3. 利用拉格朗日中值定理拉格朗日中值定理:如果函数在内连续,在内可导,则在内至少存在一点,使思路提示:1)辅助函数的作法:(以拉格朗日中值定理为例) 分析:, 令,并移项,得; 令2)验证满足定理存在条件例题14. 设在上连续,在内可导,且,试证:至少存在一个,使.例题15. 设在上连续,在内可导,且,证明至少存在一个,使得.例题16. 设在上可导,且满足关系式,证明:在内至少存在一个,使.例题17. 设在上连续,在内可导,证明:在内至少存在一个,使.(四) 等式及不等式的证明1恒等式的证明()方法归纳:1)构造辅助函数;2)证明;3),有例题18. 求证:当时,有.2. 不等式的证明方法归纳:1)利用单调性解题步骤:移项(有时需作简单的恒等变形),使不等式的一端为0,另一端即为所作辅助函数;求并验证在指定区间的增减性;求出区间端点的函数值(或极限值),作比较即得所证.例题19. 设时,证明.例题20. 当时,证明.2)利用拉格朗日中值定理证明该法适用于经过简单变形,不等式一端可写成或情形.证题步骤:在上构造函数或,选取与的原则应该是,使恰为不等式中间的项。写出微分中值定理公式或根据题意对或进行适当的缩放。注:利用中值定理证明的关键是构造函数和确定区间.例题21. 设时,有.例题22. 证明:当时,有.不等式证明总结: 1)一般而言,夹在中间函数为同一类型时,其证明可用拉格朗日定理,否则用单调性更为方便.2)若不等式中只有一个变量,可用单调性或中值定理,若含有两个变量,只能用中值定理.3定积分的证明(换元)1)定积分不等式的证明思路提示:若仅告知被知函数连续,一般需作辅助函数:将积分上限或下限换成,式中其余相同的字母也换成,移项使一端为0,则另一端的表达式即为,求出,并判别它的单调性,再求出 在积分区间的端点值,从而得出不等式的证明.例题23. 设在连续,对任意的,证明:.例题24. 设在上连续,且严格递增,证明.例题25. 设在上可导,且,证明.例题26. 在上连续,在内可导,且证明:在内至少存在一点,使.2)定积分等式的证明定积分等式的证法常有:换元法,分部积分法,构造函数法、中值定理等.例题27. 设连续,证明.例题28. 设连续,证明.例题29. 证明.例题30. 设在内连续,且,证明:1)若为偶函数,则也为偶函数; 2)若单调不减,则单调不增.4. 利用二重积分证明等式与不等式1)定积分等式的证明交换积分次序即可例题31. 证明:.2)定积分不等式的证明:思路提示:当题设条件中告知被积函数减少或增加时,并没有指明是否可导,且积分区间相同时,将命题化为差式利用变量的对称式化为二重积分来进行证明.例题32. 设在上连续且单调增加,求证:.例题33. 设函数为上的单调减少且大于0的连续函数,求证:.5. 利用格林公式验证积分与路径无关思路提示:设开区域G是一个单连通域,函数P(x, y)及Q(x, y)在G内具有一阶连续偏导数, 则曲线积分在G内与路径无关(或沿G内任意闭曲线的曲线积分为零)的充分必要条件是等式 在G内恒成立.例题34. 验证曲线积分与路径无关.例题35. 验证曲线积分与路径无关.例题36. 验证曲线积分与路径无关.附录:2010年2013年山东专升本高等数学(公共课)考试要求:2010年山东省普通高等教育专升本高等数学(公共课)考试要求总要求:考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。(3)了解反函数:反函数的定义,反函数的图象。(4)掌握函数的四则运算与复合运算。(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。(6)了解初等函数的概念。(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x,x ,x-)时函数的极限。(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。(6)熟练掌握用两个重要极限求极限的方法。(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。二、一元函数微分学(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。(2)会求曲线上一点处的切线方程与法线方程。(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。(4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。(5)理解高阶导数的概念,会求简单函数的n阶导数。(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。(二)中值定理及导数的应用(1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。(2)熟练掌握洛必达法则求“0/0”、“/”、“0”、“-”、“1”、“00”和“0”型未定式的极限方法。(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。(4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。(5)会判定曲线的凹凸性,会求曲线的拐点。(6)会求曲线的水平渐近线与垂直渐近线。三、一元函数积分学(一)不定积分(1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。(2)熟练掌握不定积分的基本公式。(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。(4)熟练掌握不定积分的分部积分法。(二)定积分(1)理解定积分的概念与几何意义,了解可积的条件。(2)掌握定积分的基本性质。(3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。(4)掌握牛顿莱布尼茨公式。(5)掌握定积分的换元积分法与分部积分法。(6)理解无穷区间广义积分的概念,掌握其计算方法。(7)掌握直角坐标系下用定积分计算平面图形的面积。四、向量代数与空间解析几何(一)向量代数(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。(2)掌握向量的线性运算、向量的数量积与向量积的计算方法。(3)掌握二向量平行、垂直的条件。(二)平面与直线(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。(2)会求点到平面的距离。(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。五、多元函数微积分(一)多元函数微分学(1)了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。(2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。(3)掌握二元函数的一、二阶偏导数计算方法。(4)掌握复合函数一阶偏导数的求法。(5)会求二元函数的全微分。(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法。(7)会求二元函数的无条件极值。(二)二重积分(1)理解二重积分的概念、性质及其几何意义。(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。六、无穷级数(一)数项级数(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。(2)掌握正项级数的比值数别法。会用正项级数的比较判别法。(3)掌握几何级数、调和级数与p级数的敛散性。(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。(二)幂级数(1)了解幂级数的概念,收敛半径,收敛区间。(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。七、常微分方程(一)一阶微分方程(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。(2)掌握可分离变量方程的解法。(3)掌握一阶线性方程的解法。(二)二阶线性微分方程(1)了解二阶线性微分方程解的结构。(2)掌握二阶常系数齐次线性微分方程的解法。2011年山东省普通高等教育专升本高等数学(公共课)考试要求总要求:考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。(3)了解反函数:反函数的定义,反函数的图象。(4)掌握函数的四则运算与复合运算。(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。(6)了解初等函数的概念。(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x,x+,x-)时函数的极限。(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。(6)熟练掌握用两个重要极限求极限的方法。(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。二、一元函数微分学(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。(2)会求曲线上一点处的切线方程与法线方程。(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。(4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。(5)理解高阶导数的概念,会求简单函数的n阶导数。(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。(二)中值定理及导数的应用(1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。(2)熟练掌握洛必达法则求“0/0”、“/ ”、“0”、“-”、“1”、“00”和“0型未定式的极限方法。(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。(4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。(5)会判定曲线的凹凸性,会求曲线的拐点。(6)会求曲线的水平渐近线与垂直渐近线。三、一元函数积分学(一)不定积分(1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。(2)熟练掌握不定积分的基本公式。(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。(4)熟练掌握不定积分的分部积分法。(二)定积分(1)理解定积分的概念与几何意义,了解可积的条件。(2)掌握定积分的基本性质。(3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。(4)掌握牛顿莱布尼茨公式。(5)掌握定积分的换元积分法与分部积分法。(6)理解无穷区间广义积分的概念,掌握其计算方法。(7)掌握直角坐标系下用定积分计算平面图形的面积。四、向量代数与空间解析几何(一)向量代数(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。(2)掌握向量的线性运算、向量的数量积与向量积的计算方法。(3)掌握二向量平行、垂直的条件。(二)平面与直线(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。(2)会求点到平面的距离。(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。五、多元函数微积分(一)多元函数微分学(1)了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。(2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。(3)掌握二元函数的一、二阶偏导数计算方法。(4)掌握复合函数一阶偏导数的求法。(5)会求二元函数的全微分。(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法。(7)会求二元函数的无条件极值。(二)二重积分(1)理解二重积分的概念、性质及其几何意义。(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。六、无穷级数(一)数项级数(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。(2)掌握正项级数的比值数别法。会用正项级数的比较判别法。(3)掌握几何级数、调和级数与p级数的敛散性。(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。(二)幂级数(1)了解幂级数的概念,收敛半径,收敛区间。(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。七、常微分方程(一)一阶微分方程(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。(2)掌握可分离变量方程的解法。(3)掌握一阶线性方程的解法。(二)二阶线性微分方程(1)了解二阶线性微分方程解的结构。(2)掌握二阶常系数齐次线性微分方程的解法。2012年山东省普通高等教育专升本高等数学(公共课)考试要求总要求:考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。(3)了解反函数:反函数的定义,反函数的图象。(4)掌握函数的四则运算与复合运算。(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。(6)了解初等函数的概念。(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x,x+,x-)时函数的极限。(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。(6)熟练掌握用两个重要极限求极限的方法。(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。二、一元函数微分学(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。(2)会求曲线上一点处的切线方程与法线方程。(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。(4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。(5)理解高阶导数的概念,会求简单函数的n阶导数。(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。(二)中值定理及导数的应用(1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。(2)熟练掌握洛必达法则求“0/0”、“/ ”、“0”、“-”、“1”、“00”和“0”型未定式的极限方法。(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。(4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。(5)会判定曲线的凹凸性,会求曲线的拐点。(6)会求曲线的水平渐近线与垂直渐近线。三、一元函数积分学(一)不定积分(1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。(2)熟练掌握不定积分的基本公式。(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。(4)熟练掌握不定积分的分部积分法。(二)定积分(1)理解定积分的概念与几何意义,了解可积的条件。(2)掌握定积分的基本性质。(3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。(4)掌握牛顿莱布尼茨公式。(5)掌握定积分的换元积分法与分部积分法。(6)理解无穷区间广义积分的概念,掌握其计算方法。(7)掌握直角坐标系下用定积分计算平面图形的面积。四、向量代数与空间解析几何(一)向量代数(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。(2)掌握向量的线性运算、向量的数量积与向量积的计算方法。(3)掌握二向量平行、垂直的条件。(二)平面与直线(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。(2)会求点到平面的距离。(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。五、多元函数微积分(一)多元函数微分学(1)了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。(2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。(3)掌握二元函数的一、二阶偏导数计算方法。(4)掌握复合函数一阶偏导数的求法。(5)会求二元函数的全微分。(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法。(7)会求二元函数的无条件极值。(二)二重积分(1)理解二重积分的概念、性质及其几何意义。(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。六、无穷级数(一)数项级数(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。(2)掌握正项级数的比值数别法。会用正项级数的比较判别法。(3)掌握几何级数、调和级数与p级数的敛散性。(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。(二)幂级数(1)了解幂级数的概念,收敛半径,收敛区间。(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。七、常微分方程(一)一阶微分方程(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。(2)掌握可分离变量方程的解法。(3)掌握一阶线性方程的解法。(二)二阶线性微分方程(1)了解二阶线性微分方程解的结构。(2)掌握二阶常系数齐次线性微分方程的解法。2013年山东省普通高等教育专升本高等数学(公共课)考试要求总要求:考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算的能力;能综合运用所学知识分析并解决简单的实际问题。一、函数、极限和连续(一)函数1.理解函数的概念:函数的定义,函数的表示法,分段函数。2.理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。3.了解反函数:反函数的定义,反函数的图象。4.掌握函数的四则运算与复合运算。5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。6.了解初等函数的概念。(二)极限1.理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。3.理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x,x+,x-)时函数的极限。4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。6.熟练掌握用两个重要极限求极限的方法。(三)连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。4.理解初等函数在其定义区间上连续,并会利用连续性求极限。二、一元函数微分学(一)导数与微分1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。2.会求曲线上一点处的切线方程与法线方程。3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。4.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。5.理解高阶导数的概念,会求简单函数的n阶导数。6.理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。(二)中值定理及导数的应用1.了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。2.熟练掌握洛必达法则求“0/0”、“/ ”、“0”、“-”、“1”、“00”和“0”型未定式的极限方法。3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。4.理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。5.会判定曲线的凹凸性,会求曲线的拐点。6.会求曲线的水平渐近线与垂直渐近线。三、一元函数积分学(一)不定积分1.理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。2.熟练掌握不定积分的基本公式。3.熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。4.熟练掌握不定积分的分部积分法。(二)定积分1.理解定积分的概念与几何意义,了解可积的条件。2.掌握定积分的基本性质。3.理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。4.掌握牛顿莱布尼茨公式。5.掌握定积分的换元积分法与分部积分法。6.理解无穷区间广义积分的概念,掌握其计算方法。7.掌握直角坐标系下用定积分计算平面图形的面积。四、向量代数与空间解析几何(一)向量代数1.理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。2.掌握向量的线性运算、向量的数量积与向量积的计算方法。3.掌握二向量平行、垂直的条件。(二)平面与直线1.会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。2.会求点到平面的距离。3.了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。4.会判定直线与平面间的关系(垂直、平行、直线在平面上)。五、多元函数微积分(一)多元函数微分学1.了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。2.理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。3.掌握二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论