




已阅读5页,还剩137页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SIGMA 实验设计 实验设计介绍 SIGMA VersionNov2002 Page 6Sigma实验设计课程规划各节内容Y1 课程介绍Y2 实验设计介绍Y3 全因数Y4 部分因数Y5 实验设计规划Y6 案例 SIGMA 实验设计 1 全因数 SIGMA 根本原因分析的两种方法 Twomethodforrootcauseanalysis Page VersionNov2002 1 用历史数据观察流程Y散布图 进行图 控制图 分层 scatterplot runchart controlchart deplayY相关性 差异分析 回归分析 correlation ANOVA regression 2 流程的实验 用一个规划好的方法变流程并衡量结果Y实验设计实验设计是有效率和有效果地探究许多流程变量 X 和产出衡量或关键量点 Y 的因果关系的一种方法 SIGMA 使用历史数据的一些限制somelimitationwhenusinghistorydata Page VersionNov2002 记录常是不完整的 Y省略的变量 X Y缺少的值或观察数据Y包含数据惧错误流程变量通常是有相互关系的重要变量可能没有变化得足够充分到能了解它们的影响的程度通常来就 必要数据不是立刻可得到的 获得正确数据是非常必要的 识别关键变量 Identifykeyvariables SIGMA历史方法 historymethod SIGMA 练习 确定最佳关键变量设置 历史方法目标 Page VersionNov2002 了解到识别影响化学流程产量的关键变量的难点 30分钟 说明 用下页的信息来设置一个衡量计划 从而发现能使流程产量最大化的各变量最好设置 D每个实验运行成本 2 000D你对初始调查的总体预算是 30 000D如果有足够的证据 另外有 50 000可用于将来的研究确定在给定的不同标准内可能的变量组合总数确定在现在预算内你可作出的变量组合总数你会检验什么组合 你用什么策略来识别关键变量 SIGMA 练习 确定最佳关键变量设置 历史方法 Page VersionNov2002 练习 流程中的关键变量是 Y原料卖主 A B C Y原料放进混合桶中的温度 高 中 低 Y在混合桶顶部的温度 高 中 低 Y在混合桶底部的温度 高 中 低 Y混合桶中的压力 高 中 低 Y桶中的原料量 20 50 100 150公吨 Y原料拿离混合桶的温度 高 中 低 SIGMA 识别关键变量 历史方法概要 Page VersionNov2002 Y1 确定给定不同标准内可能的变量组合总数 3x3x3x3x3x4x3 2 916个组合Y2 确定在现有预算内你可作出的变量组合数Y3 你会检验什么组合Y4 你用什么策略来识别关键变量两个常用策略是Y一次一个因素Y一次多个因素多数人由他们能作出的最佳猜测开始 然后一次改变一个变量 这就是我们多数人是学习实验的方法 这也是在工程学校中所教授的 一次改变一个变量让你可看见这个变量的效果 但是可能导致额处时间和成本的浪费 SIGMA 识别关键变量 历史方法概要 Page VersionNov2002 同时改变多种因素Y一次改变多种因素也是一个非常普通的实验方法当小级做以下事时 他们常会选用这个方法Y集体讨论可能改进流程的方法 Y择优选用个人想法Y实施所有你一次可做到的高优先权想法 这个方法的问题Y你不知道什么样变化是对结果的改进负责的Y你或许把变量维持在减少你效力的水平上 Y了解每个变化的成本 收益事项是不可能的 这些方法是可用的 但是良好的实验设计会是更有效率及效力的方法 SIGMA 识别关键变量 历史方法概要实验设计很有代表性的 你对结果的直觉很砂会与设计好的实验结果相一致 你将发现你经常会学习某些高出或低于你直觉的事 这就是6Sigma是有关什么的 使数据基于如何改进流程的决定设计良好并以统计为基础的实验可提供高质量 含大量信息的数据 Page VersionNov2002 SIGMA 全因数 介绍 实验设计 SIGMA 实验设计的介绍 Page VersionNov2002 实验设计是一种组织我们的思想 从而检测我们确信对关键质量点有影响的X变量的方法 它在6Sigma中的目标主要是识别重要的少数因素 知道并了解关键流程变量对关键质量点的影响 实验设计基于由以下获得的知识 Y分析流程业绩表现Y了解变量间的关系Y制定有关根本原因的假设实验设计帮助我们检测这些假设 以核实并了解流程中所做的改进 SIGMA 流程的实验对流程知识的系统追求 实验设计帮助规划 收集特殊数据并确认流程的理论 一个黑带或流程拥有者通常会自有一套有关不同变量是如何影响关键质量点的理论 这个方法是对流程知识的系统追求 业务流程 客户 数据 数据 流程知识增加 计划 计划 分析 分析 理论 Page VersionNov2002 理论 理论 SIGMA 实验设计 Page VersionNov2002 确定流程和产出衡量之间的关系识别差异的 重要少数 来源提供 重要少数据 对回应变量 关键质量点 影响的衡量 提供比一次检测一个因素更有效的衡量和更高质量的数据最小化你必须执行的检测次数目标 提高发现 重要少数 的可能性 为确定在你干涉流程时会发生什么事 你必须干涉流程 非凡不是被动观察它 GeorgeBox SIGMA 使用统计设计实验的好处检测的系统方法发展高质量的数据评估大量变量控制有损害的变量对效果的定量估计不确定性的衡量有效力和有效率的数据使用 Page VersionNov2002 SIGMA 3个因素 一次一个的策略 2个标准 低设置 设置 Page VersionNov2002 SIGMA 3个因素 一次一个的策略 少了哪些因素设置的组合 5678 低设置 设置 Page VersionNov2002 SIGMA 3个因素 一次一个的策略 Page VersionNov2002 5678 低设置 设置 SIGMA 一次改变一个因素对比实验设计 设计好的实验优点增加两倍有关从标准A到新A产生影响的信息增加两倍有关从标准B到新B产生影响的信息有关A和B的影响是否是添加的信息 它们是互相影响或是有结合在一起的影响吗 标准 标准 因素B 因素A 新 标准 标准 因素B 因素A 新 对两个有兴趣的因素的一次一个因素对两个有兴趣的因素的设计实验新新 Page VersionNov2002 SIGMA 全因数 用MINITAB设计实验23范例 SIGMA 设计一个全因数23实验 一个全因数设计能检验所有标准上的全部因素 Y它使用整个设计空间Y它检测所有标准上的全部因素以及它们的相互影响23范例Y2是每个因素 变量 的标准数Y3是因素的数量 23 因素的数量 3 因素的标准 2 Page VersionNov2002 SIGMA 3个因素 全因数排列 Page VersionNov2002 对于3个因素 每个在2个标准上 有23 2x2x2 8个因素设置的组合 注意标准次序内的因素的设置模型 SIGMA 一个23因数排列范例对三个可能影响产量的因素 Page VersionNov2002 因为重复模型而容易排列包括了整个设计空间 2k实验的模型 试验数 2个标准 个因素 2k因此 叫做 因数设计 注意 每额外因素加倍了所需的运行数 X1X2X3X4 XS5MA I GXGk 1234 567891011 1213141516171819 202122232425262728293031 32 2 Std Order ofkfactorsK 1 Page VersionNov2002 K 2 K 3 K 4 K 5 SIGMA 概要 因数策略 2 k Page VersionNov2002 当因素增加 运行次数成指数倍增加全因数设计包括了整个设计空间有三个因素的实验设计空间可由一个立方体来表示因为标准次序中的重复模型 所以全因数设计容易排列 2个标准实验的组合数 2k 2x2x2 2 k次 这里k 因素数目一次一个的设计探究了设计空间一个潜在易引起误解的部分 SIGMA 6Sigma实验 确定 衡量 分析 实验设计 XS 识别回应衡量YS识别因素和选择设计和障碍任意排列运行 实验分析 5 收集资料 分析资料得出结论核实结果 改进 控制 Page VersionNov2002 SIGMA 实验 实验设计范例 Page VersionNov2002 项目声明 背景Y产品的高失效率造成客户投诉 为此组建一个小组D客户心声 VOC 显示了大多数的产品失效发生在首次使用时D一个对退回产吕的工程分析识别出不合格产品是因为微电子部件的损坏D小组进行了根本原因分析并确定损坏以生在产品在传送带上的时候Y对传送带的调查发现因为振动产生电火花引起产品漏电 从而造成许多接地线的损坏 现在的任务是识别最耐用的 能支持传送带的正常振动的接地线Y小级由制订石川图开始工作 来识别有关接地线耐久性的关键因素 SIGMA 实验 石川图 接地线的耐久性 程序 环境 原料 人 原料 电镀 铜 A B 尺寸 16量度 24量度 仓库 购买代理供应商 请求人 清洁 检查 保护方法 原料 收到 检查 存储 包装 原因 结果 Page VersionNov2002 SIGMA 实验 石川图 Page VersionNov2002 小组识别出三个他们相信对接地线耐久性有最大影响的因素 所这三个因素都与材料有关 Y1 电线量度 尺寸 D16量度D24量度Y2 电线类型 原料 D铜D电镀铁Y3 电线厂商 供货商 DElco工业D齿冠螺栓 SIGMA MINITAB设计实验的步骤 步骤 Page VersionNov2002 MINITAB命令 识别回应衡量YS识别因素和因素标准XS Y 接地线的耐久性STAT DOE CREATEFACTORIALDESIGNTypeofDesign 2levelfactorial Numberoffactors 3 3 选择设计和障碍 SelectDesignsFullorfractionalNumberofreplicatesNumberofblocks 4 任意排列运行 SelectFactorsNamesLowLevelHighLevelSelectOptionRandomizeRuns 实验设计 SIGMA 用Minitab设计实验 Minitab命令 STAT DOE CREATEFACTORIALDESIGN Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGN显示可用的设计 Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGN Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGNSelect3Factors Page VersionNov2002 SIGMA 用Minitab设计实验的步骤 步骤1 识别回应衡量YS Page VersionNov2002 2 识别因素和因素标准XS MINITAB命令Y 接地线的耐久性STAT DOE CREATEFACTORIALDESIGNTypeofDesign 2levelfactorial Numberoffactors 3 3 选择设计和障碍 SelectDesignsFullorfractionalNumberofreplicatesNumberofblocks 4 任意排列运行 SelectFactorsNamesLowLevelHighLevelSelectOptionRandomizeRuns 实验设计 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGNSelectDesigns Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGNSelectFullFactorial Selectreplicates 2Selectblocks 2 2batches Page VersionNov2002 SIGMA 复制定义 所有实验条件的复制为什么 为衡量实验可变笥Y所以我们可决定回应之间的差异是否是因为因素标准的变化 一个特殊的促因 或普通原因可变性为看的更清楚一个因素是否重要 为获得整个实验组合的两上回应 复制与对一个单件或单批的多重衡量是不一样的 Page VersionNov2002 SIGMA 随机化 实验的保险 Page VersionNov2002 定义 分配次序 在其中试验将以随机的机制来运行Y不是标准次序Y不是在一个便利的次序中运行YMINITAB将随机选择运行次数为什么 在实验的所有因素中均分潜中均分潜伏变量的影响帮助避免系统或趋积向的影响 SIGMA VersionNov2002 上海盖普企业管理咨 询有限公司Page 范例 为什么随机化 在这个范例中 原料使用可能会跨月 从而使因素影响在按标准次序进行的设计运行变得不明显 20 0 70 60 50 40 10DayoftheMonth Yield SIGMA 范例 为什么随机化 在这个随机化的实验中 不论每月的变化化如何 原料卖主影响明显可见的 20 0 70 60 50 40 10DayoftheMonth Yield VendorA Page VersionNov2002 VendorB SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGNSelectFactors Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGN输入每个因素的高低标准 Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE CREATEFACTORIALDESIGN按OK Page VersionNov2002 SIGMA FullFactorialDesign BlockGenerators replicatesAlltermsarefreefromaliasing 用Minitab设计实验Minitab命令 SessionWindowOutput Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 WorksheetOutput 注意 每个计算机的工作表运行次序是不同的 Page VersionNov2002 SIGMA 6Sigma实验 确定 Page VersionNov2002 衡量 分析 实验设计 识别回应衡量YS识别因素和因素标准XS选择设计和障碍任意排列运行 5 收集资料 实验分析 分析资料得出结论核实结果 改进 控制 SIGMA 说明交互作用的影响 4 4 13 25 17 25 14交互作用的影响 温度对供货商A的影响 18 5 12 18 10 17 21 21 4 4 19 75 13 6 25 解释温度对供货商A的影响 高的平均数一低的平均数 16 13 22 26 9 21 15 7 4 6 25 2 5 125 19 Low HighTemperature 13 SupplierASupplierB Page VersionNov2002 SIGMA 收集实验资料 Page VersionNov2002 练习说明 续 收集资料按 运行 次序 收集资料弯曲每根电线直到断裂计数电线断裂前的弯曲次数记录必要的注释资料收集后 在MINITAB中记录整个小组的结果填写题目为 从练习中你学到什么有关实验的知识 的空白页 SIGMA 运作定义 弯曲 电线的耐久性将由弯曲电线直到断裂来确定 Y在 Y 对产品首次使用失效的客户投诉Y小 y 接地线的耐久性电线断裂前弯曲次数越多 接地线越耐久 Page VersionNov2002 SIGMA 运作定义 弯曲 电线 Page VersionNov2002 开始 二次弯曲 一次弯曲 0 1 2 SIGMA 从练习中你学到什么有关实验的知识 Page VersionNov2002 SIGMA 从练习中你学到什么有关实验的知识 答案一根电线不代表所有的电线类型实验流程在一段时间内的差异态度影响试验运作定义较难确保多位资料收集者的一致性 Page VersionNov2002 SIGMA 6Sigma实验 确定 Page VersionNov2002 衡量 分析 实验设计 识别回应衡量YS识别因素和因素标准XS选择设计和障碍任意排列运行 5 收集资料 实验分析 分析资料得出结论核实结果 改进 控制 实验设计和分析的分步流程 续 SIGMA 步骤 6 分析资料 识别大的影响 MINITAB命令STAT DOE ANALYZEFACTORIALDESIGNEnterresponses Graphs EffectplotsNormalParetoAlpha 0 05 寻找模型中的问题 ResidualforplatsstandardizedNormalplotResidualsvs FitsResidualsvs Order 看因素对回应的主要影响 绘制原始资料 使大家能看清如何改进流程 STAT DOE ANALYZEFACTORIALDESIGNMaineffectsSetup SpecifyresponseandallfactorsofinterestInteractionSetup SpecifyresponseandallfactorsofinterestCubeSetup Specifyresponseandallfactorsofinterest 用简单的话概括结论核实结果 实验分析 Note Onlyfor Page VersionNov2002 replicatedor reducedterms analysis SIGMA 用Minitab设计实验Minitab命令 STAT DOE ANALYZEFACTORIALDESIGN 用你的数据或文件 WireDurability mpj Page VersionNov2002 SIGMA 用Minitab设计实验Minitab命令 STAT DOE ANALYZEFACTORIALDESIGN Effectsplots NormalParetoAlpha 0 05ResidualsforPlots StandardizedResidualPlots NormalPlotResidualsversusfitsResidualsversusorderOK Page VersionNov2002 SIGMA 影响是什么 影响被定义为 当一个因素从它的低标准 1 改变到高标准 1 所发生的相应的变化 范例 量度影响 平均高量度 平均低量度 21 15 22 18 17 26 21 18 9 16 10 13 7 5 12 2188 19 75 11 625 8 125量度的主要影响是8 125次弯曲 从低量度改变到高量度引起耐久性性平均增加8 125次弯曲 Page VersionNov2002 SIGMA 确定哪些是较大影响的方法在此例中 因为设计是被复制的 分析提供了P值 与在回归中一样 小的P值显示了重要的影响 大的影响由柏样图和正态概率图上的符号来确定 无法复制的设计不能用来计算P值 所以使用标准影响图的柏拉图 正态概率图 Page VersionNov2002 SIGMA 练习 解释残值图 Page VersionNov2002 目标 了解值分析如何有助于识别资料和模型的问题 30分钟 说明用你在下几页的资料和信息来分析残值 用指定的残值图类型来完成下表均分观察资料和结论 SIGMA 残值图1 正态概率图为什么 查找与非 直线 关系的主要偏差 这意味着在资料范围内因素间的关系不是持续不变的 查找离群值 Page VersionNov2002 SIGMA 正态概率图 直线关系显示资料遵循正态分布 这些值除离群值外 遵循正态分布 检查离群值 这个S形显示这些值不是正态分布的 变换数据可能是有用的 2 1 1 2 2 1 0 1 2 NormalScore 0StandardizedResidual NormalProbabilityPlotoftheResiduals responseisNumbero Page VersionNov2002 SIGMA 残值分析 残值是正态分布的吗 2 1 1 2 2 1 0 1 2 NormalScore 0StandardizedResidual NormalProbabilityPlotoftheResiduals responseisNumberofbends Page VersionNov2002 SIGMA 残值图2 60 50 40 30 20 10 2 1 0 1 2 StandardizedResidual 根据合适值绘制残值图ResidualsVersustheFittedValues responseisNumberofbends 60 50 40 30 20 10 2 1 0 1 2 FittedValueFittedValue为什么 为查找一个非随机模型 例如扩音器外形 扩音器外形显示随着回应增加 差异也增加 结论可能会受影响 可能不正确 尝试变换数据 忽视由围绕0的对称点象征的模型 这不是一个特殊原因 两次复制总是看起来是完美相配的 StandardizedResidual ResidualsVersustheFittedValues responseisNumberofbends Page VersionNov2002 SIGMA 残值图3 为什么 为确保只有普通原因与实验可变性相关 这个关系将不会改变 为查找可能影响我们结论的潜伏变量 趋向 离群值 或非随机模型 它们可能已隐藏在其他图中的 16 14 12 10 68 24 2 1 0 1 2 ObservationOrder StandardizedResidual 根据时间次序绘制残值图ResidualsVersustheOrderoftheData responseisNumbero 16 14 12 10 68 4 2 2 1 0 1 2 ObservationOrder StandardizedResidual ResidualsVersustheOrderoftheData responseisNumbero Page VersionNov2002 SIGMA 实验设计和分析的分步流程 续 6 分析资料STATDOEANALYZEFACTORIALDESIGN 识别大的影响 Enterresponses Graphs EffectplotsNormalPareto 寻找模型中的问题 Alpha 05ResidualforplotsstandardizedNormalplotsResidualsvs Order 看因素对回应的主要影响 Notes Onlyforreplicatedorreducedtermsanalysis STATDOEANALYZEFACTORIALDESIGN 绘制原始资料 使大家能看清如何改进流程MaineffectsSetup 7 用简单的话概述结论SpecifyresponseandallfactorsofinterestInteractionSetup Specifyresponseandallfactorsofinterest8 核实结果CubeSetup SpecifyresponseandallfactorsofinterestPageVersionNov2002 实验分析 SIGMA 用Minitab分析实验 Minitab命令 STATDOEFACTORIALFACTORIALPLOTS Page VersionNov2002 SIGMA 用Minitab分析实验Minitab命令 STATDOEFACTORIALFACTORIALPLOTS选择 MainEffectsInteractionCube按如下设置以上每个 Page VersionNov2002 SIGMA 用Minitab分析实验Minitab命令 FACTORIAL STATDOE选择 弯曲次数 FACTORIALPLOTS选择 按双箭头选择所有因素 Page VersionNov2002 SIGMA 练习 解释实验设计分析图 Page VersionNov2002 目标 用因数图来分析数据 20分钟 说明分析下列每个图 主要影响图交互作用图立方图用下几页来帮助准备对每张图的简要陈述制作浏览板报或幻灯片来说明工具从练习的数据中得出结论 SIGMA B的正面影响 总体平均值 A的负面影响 4 754 60 4 90 4 454 30 回应 Page VersionNov2002 温度 压力 容量 主要影响图低A 高A低B 高B 低C 高C C的正面影响 SIGMA 交互作用图 A B间没有交互作用 定义 当有交互作用存在时 一个因素对回应的影响与其他各标准因素对回应的影响是不同的 A B互相作用这里 B的影响以与上述相同的方式随着A的标准而变化 低A 高A 低A高A 高B 低B低A A B互相作用B的影响随着A的标准而变化 这里 B对低标准A有负面影响 对低A高标准A有正面影响 高A 高A 低B 高B 低A Page VersionNov2002 高A 低B 高B SIGMA 两个变量的交互作用 回应表面观察 三维观察没有交互作用在X1 X2 方向的回应表面倾斜率在X2 X1 的常量值上是相同的 交互作用在X1 X2 方向的回应表面倾斜率X2 X1 水平增加而增加 Y Y 2 Page VersionNov2002 X1 X2 Y 10 Y 2 Y 4 Y 14 X1 X2 交互作用 没有交互作用 SIGMA 说明交互作用的影响 14 4 4 19 75 13 6 25 4 6 25 2 5 125 4 13 19 低 高 温度供货商A供货商B Page VersionNov2002 解释温度对供货商A的影响 高的平均数一低的平均数 16 13 22 26 9 21 15 7 温度对供货商B的影响 18 5 12 18 10 17 21 2144 13 25 17 25 交互作用的影响 SIGMA 范例 立方图 两个观察资料 可看出对因素A有负面影响 对因素B没有影响 回应是产量 可看出对供贷商和催化剂有正面影响 9 10 8 10 2 2 2 3 58 51 50 45 Page VersionNov2002 10Labs 5Labs 催化剂 A B 供货商 A B SIGMA 立方图 3个因素 因数策略Y立方体有助于把包含3个因素的实验空间直观化Y每个对角表示一组实 验条件 Y23 2个标准 3个因素 8个实验条件 Page VersionNov2002 因素1 因素2 因素3 Page 实验设计和分析的分步流程 续 SIGMA 6 分析资料STATDOEANALYZEFACTORIALDESIGN 识别大的影响 Enterresponses Graphs EffectplotsNormalPareto 寻找模型中的问题 Alpha 05ResidualforplotsstandardizedNormalplotsResidualsvs Order 看因素对回应的主要影响 Notes Onlyforreplicatedorreducedtermsanalysis STATDOEANALYZEFACTORIALDESIGN 绘制原始资料 使大家能看清如何改进流程 7 用简单的话概述结论 8 核实结果 MaineffectsSetup SpecifyresponseandallfactorsofinterestInteractionSetup SpecifyresponseandallfactorsofinterestCubeSetup SpecifyresponseandallfactorsofinterestVersionNov2002 实验分析 SIGMA 用简单的话来概述结论记录所有在实验期间得出的结论Y确认预期的和不寻常的调查结果Y确认学到的经验教训Y用简单的话写下结论结果应以流程术语来表达 而不是统计术语提出建议结论和建议必须由数据支持 Page VersionNov2002 SIGMA 核实结果有两个基本方法来核实从实验田得出的结论 Y确认的运行 在建议的设置上运行几个额外的实验 看看是否达到想要的回应 Y执行实际建议的流程变革 改变流程并用SPC追踪结果以确保达到并维持想要的结果继续监控流程以确保实现预计的耐久性增长 Page VersionNov2002 SIGMA 练习 总结并核实电线练习的结果练习 目标练习总结结果并合适实验的结论 20分钟 说明 1 完成下两页上的电线耐久性练习Y总结结论Y核实结果2 准备好讨论在实现调查结果时你预计发现的步骤和关键问题 Page VersionNov2002 SIGMA 总结电线练习结论我们得出什么结论 有任何意外的发现吗 我们将得出什么对将来运行流程的建议 Page VersionNov2002 SIGMA 核实电线练习的结果我们会做确认运行吗 为核实结果 我们会作出建议的流程变革吗 我们会在全面执行前先做一个试行吗 Page VersionNov2002 SIGMA 在你的业务中使用实验设计 Page VersionNov2002 目标应用实验设计到你的流程完成下页的表格 20分钟 说明对你的流程之一 列出一些你认为可能会改进流程的变革用下页的模板 把流程变革的想法转常驻成一个设计好的实验 准备简述 Y以上步骤1和2Y学到的主要知识 SIGMA 实验设计的规划表 Page VersionNov2002 变量 X 和回应 Y 的选择流程 如何衡量 回应 Y 1 2 3 集体讨论可能是重要的变量 X 1 2 3 4 5 6 7 8 变量 X 低标准 高标准 1 2 3 4 5 SIGMA 接地线的耐久性 解决方案 SIGMA 分析设计 Session窗口输出 Page VersionNov2002 FractionalFactorialFit NumberofBeversusgauge type manufacturerEstimatedEffectsandCoefficientsforNumber codedunits SIGMA 分析设计 图表 Minitab命令 STAT DOE ANALYZEFACTORIALDESIGN影响图 NormalParetoAlpha 0 05 2 5 2 0 1 5 1 0 0 5 B AC A ABC AB C BC0 0 ParetoChartoftheStandardizedEffects responseisNumbero Alpha 05 A gaugeB typeC manufact 1 2 1 5 1 0 0 5 0 0 0 5 1 0 1 5 10StandardizedEffect NormalScore B NormalProbabilityPlotoftheStandardizedEffects responseisNumbero Alpha 05 A gaugeB typeC manufact Page VersionNov2002 SIGMA 实验设计 2 全因数和混合 SIGMA 实验设计概述 Page VersionNov2002 SIGMA 减少因数实验的规模 Page VersionNov2002 因数策略是一个有效的实验方法许多因素潜在地影响了流程 产品的质量在两个标准上调查因素 造成了大量的实验运行次数2k一个有K个因素 2个标准的因数所需的运行次数 因素数量1234 运行次数24816 532664 789 128256512 101024 15 20 32768 1048576 减少运行次数 标准次序卖主量器1 2 3 4 5 6 7 8 类型 在分派的时间里 你只能运行4次试验 一半 你选择哪4次试验 一半 SIGMA 1 Page VersionNov2002 2 3 5 7 8 6 卖主 类型 量器 4 SIGMA VersionNov2002 Page 选择正确的半分数 目标从最少的资料中得到最多的信息 标准次序卖主量器类型1 4 5 67 8 1 2 3 5 7 8 6 卖主 类型 量器 4 1 2 3 5 7 8 6 卖主 类型 量器 4 SIGMA 不均衡或混合的设计 标准次序卖主量器1 2 3 类型 4 567 8 1 2 3 5 7 8 6 卖主 类型 量器 4 你有对量器效果的衡量吗 Page VersionNov2002 SIGMA 不均衡或混合的设计 标准次序卖主量器类型 1 2 34567 8 1 Page VersionNov2002 2 3 5 7 8 6 卖主 类型 量器 4 量器和电线类型是混合的 SIGMA 选出的半分数特性设计是良好平衡的 在各标准每个因素被研究的次数是相同的 设计被所缩小进一个全因数中Y当任何一个因素被证明是不显著的 结果导致另外两个因素中的全因数 设计应以最少量的资料提供最多的信息 Page VersionNov2002 SIGMA 两个标准因数设计的可用信息 一个有K个因素 2个标准的因数所需的运行次数 1234 1234 因素数量主要影响两个因素的交互作用 136 较高次序的运行次数交互作用 15 24816 5678 5678 10152128 164299219 3264128256 910 15 910 15 3645 105 466968 32674 5121024 32768 20 20 190 1048365 1048576 Page VersionNov2002 SIGMA 5个因素设计的信息范例 全因数 32次运行 五个因素的确良交互作用半部分 16次运行 总体平均数主要影响两个因素的交互作用 16 321510 Page VersionNov2002 1 为什么半分数没有三 四和五个因素的交互作用 因为它们与较低次序的交互作用相混合 SIGMA 有混合影响的两个因素的实验 78 109 什么是因素A的影响 9 5 2 5 7什么是因素B的影响 9 5 2 5 7哪个因素 引起 回应变化 不能分辨 因素A和B的影响是混合在一起的 平均数 2 5 Page VersionNov2002 平均数 9 5 SIGMA 用Minitab设计半分数 Minitab命令 STATDOEFACTORIALCREATFACTORIALDESIGN 选择 5个因素 选择 DisplayAvailableDesigns Page VersionNov2002 SIGMA 用Minitab设计半分数 Minitab命令 STATDOEFACTORIALCREATFACTORIALDESIGN 5个因素的选项 半分数 Page VersionNov2002 SIGMA 用Minitab设计半分数 Minitab命令 STATDOEFACTORIALCREATFACTORIALDESIGN选择Design OK OK Page VersionNov2002 SIGMA 用Minitab设计半分数FactorialDesign FractionalFactorialDesignFactors 5BaseDesign 5 16 Resolution V DesignGenerators E ABCD AliasStructure I ABCDE A BCDEB ACDEC ABDED ABCEE ABCDAB CDEAC BDEAD BCEAE BCDBC ADEBD ACEBE ACDCD ABECE ABDDE ABC AB CDE Page VersionNov2002 SIGMA表达式 AB CDE 是什么意思 Page VersionNov2002 在这个实验中 AB和CDE是混合在一起的如果我们相乘A B的 和 并对C D E的 和 也做同样的事 我们发现AB CDE如果把所有在 AB级上的回应取平均数 再减去在 AB级上的反有回应的平均数 得出预计AB交互作用的影响 我们这样做的时候 同时也预计了交互作用CDE的影响得出的结果既不是单独的AB交互作用 也不是单独的CDE交互作用 而是这些交互作用的总数因此 当我们谈到设计中的混合性 我们用 因为 和 符号的模式是相同的但是当我们计算影响的时候 我们用 来提醒我人算出的影响可能是所有混合影响的结合注意AB的交互作用 SIGMA 练习 比较全因数和半分数分析 Page VersionNov2002 目标识别使用全因数或半分数的好处 30分钟 说明 打开文件 C 6sigma HalfFraction mpj因素在下页被识别出实验已设计好 所以你可直接执行Stat DOE AnalyzeFactorialDesignandFactorialPlots分析并解释全因数分析并解释半分数比较全因数和半分数的结果注意 确定在你的输出上写好名称 这样你可分辨全 半间的差异 总结实验结论列出全因数是首选的情况列出半分数是首选的情况 SIGMA 练习 比较全因数和半分数分析 Page VersionNov2002 化学产品是聚合体乳胶 目标是提高流程的产量 识别出5个因素对产量有潜在的较大影响 一个全因数需要25或32次运行 和个半分数需要25 1或16次运行 每个因素加倍所需的运行数 一个半分数的运行数是一个全因数所需运行数的一半 SIGMA 练习 比较全因数和半分数分析 Page VersionNov2002 解决方案 SIGMA 练习 比较全因数和半分数分析 30 20 10 0 AEACEDEBDBCBACDCDCABBEEAD ParetoChartoftheEffects responseisYield Alpha 05 A ConcentrB CatalystC FeedRatD TemperatE Agitatio 20 10 0 10 20 30 1 0 1 Effect NormalScore AE A NormalProbabilityPlotoftheEffects responseisYield Alpha 05 A ConcentrB CatalystC FeedRatD TemperatE Agitatio 30 20 10 0 AEADEABDBDBDEABCDABCEABECDEECACDBCBACDEADEADABCDECEBCEBCDEABDEABABCCDBE DBCD ACE ParetoChartoftheEffects responseisYield Alpha 05 only30largesteffectsshown A ConcentrB CatalystC FeedRatD TemperatE Agitatio 20 10 0 10 20 30 2 1 0 1 2 Effect NormalScore AE A NormalProbabilityPlotoftheEffects responseisYield Alpha 05 A ConcentrB CatalystC FeedRatD TemperatE Agitatio Page VersionNov2002 结论 浓度和搅动率交互作用的影响及浓度的单独影响是显著的 SIGMA 部分因数拟合预计的产量影响和系数 Page VersionNov2002 结论 浓度和搅动率交互作用的影响及浓度的单独影响是显著的 SIGMA 半分数别名结构 Page VersionNov2002 I Concentr Catalyst Feed Temperat AgitatioConcentr Catalyst Feed Temperat AgitatioCatalyst Concentr Feed Temperat AgitatioFeed Concentr Catalyst Temperat AgitatioTemperat Concentr Catalyst Feed AgitatioAgitatio Concentr Catalyst Feed TemperatConcentr Catalyst Feed Temperat AgitatioConcentr Feed Catalyst Temperat AgitatioConcentr Temperat Catalyst Feed AgitatioConcentr Agitatio Catalyst Feed TemperatCatalyst Feed Concentr Temperat AgitatioCatalyst Temperat Concentr Feed AgitatioCatalyst Agitatio Concentr Feed TemperatFeed Temperat Concentr Catalyst AgitatioFeed Agitatio Concentr Catalyst TemperatTemperat Agitatio Concentr Catalyst Feed SIGMA 比较全因数和半分数分析 Agitationra Temperature FeedRate Catalyst Concentratio 120 100 180 140 15 10 2 1 6 3 75 70 65 60 55 Yield rea MainEffectsPlot datameans forYield rea 120 100 180 140 15 10 2 1 90 7050 907050 90 7050 9070 50 InteractionPlot datameans forYield rea 120 100 180 140 15 10 2 1 9070 5090 70 5090 70 5090 70 50 InteractionPlot datameans forYield AgitationRa Temperature FeedRate Catalyst Concentratio 120 100 180 140 15 10 2 1 6 3 75 70 65 60 55 Yield MainEffectsPlot datameans forYield Page VersionNov2002 SIGMA 比较全因数和半分数分析 36 120 100 90 80 70 60 50
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业运营效率与策略研究
- 三农村危房改造工作指南
- 综合农业可研报告
- 三农产品品牌打造作业指导书
- 软件行业项目可行性分析报告
- 装配式建筑设计规范
- 农业产业链延伸发展策略手册
- 光伏发电太阳能工程
- 环保产业园区可行性研究报告
- 项目筹备及执行计划书
- 光伏发电工程达标投产创优工程检查记录
- 领导干部要树立正确的价值观、权力观、事业观课件
- 体育社会学(第一章)卢元镇第四版课件
- 数电课件康华光电子技术基础-数字部分第五版完全
- DB21-T 2041-2022寒区温拌沥青路面工程技术规程
- 语文主题学习整本书阅读指导课件
- 职业教育课堂教学设计(全)课件
- 工程项目造价控制措施
- 心电监护操作评分标准
- 电子印鉴卡讲解
- 二方审核计划
评论
0/150
提交评论