湖北荆州沙第五中学高中数学2.2.1椭圆及其标准方程1学案无答案新人教选修21_第1页
湖北荆州沙第五中学高中数学2.2.1椭圆及其标准方程1学案无答案新人教选修21_第2页
湖北荆州沙第五中学高中数学2.2.1椭圆及其标准方程1学案无答案新人教选修21_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.1椭圆的标准方程导学案学习目标 1从具体情境中抽象出椭圆的模型;2掌握椭圆的定义;3掌握椭圆的标准方程学习过程一、学情调查、情境导入复习1:过两点,的直线方程 复习2:方程 表示以 为圆心, 为半径的 二、问题展示、合作探究 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数新知: 我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 反思:若将常数记为,为什么?当时,其轨迹为;当时,其轨迹为试试:已知,到,两点的距离之和等于8的点的轨迹是 小结:应用椭圆的定义注意两点:分清动点和定点;看是否满足常数新知:焦点在轴上的椭圆的标准方程其中若焦点在轴上,两个焦点坐标 ,则椭圆的标准方程是 典型例题例1 写出适合下列条件的椭圆的标准方程:,焦点在轴上;,焦点在轴上;变式:方程表示焦点在轴上的椭圆,则实数的范围 例2已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程 变式:椭圆过点 ,求它的标准方程小结:由椭圆的定义出发,得椭圆标准方程 动手试试练1. 已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是( )A B6 C D12练2 方程表示焦点在轴上的椭圆,求实数的范围三、达标训练、巩固提升(时量:5分钟 满分:10分)1平面内一动点到两定点、距离之和为常数,则点的轨迹为()A椭圆 B圆 C无轨迹 D椭圆或线段或无轨迹2如果方程表示焦点在轴上的椭圆,那么实数的取值范围是( )A B C D3如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是( )A4 B14 C12 D84椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程是 5如果点在运动过程中,总满足关系式,点的轨迹是,它的方程是四、知识梳理、归纳总结课后作业 1. 写出适合下列条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论