




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列求通项公式A组1.在数列中, =1, (n+1)=n,求的表达式。2.已知数列中,前项和与的关系是 ,试求通项公式。3.已知数的递推关系为,且求通项。4.在数列中,,,求。5.已知数列中且(),求数列的通项公式。6.已知数列的前n项和,其中是首项为1,公差为2的等差数列. (1)求数列的通项公式;7.已知等差数列an的首项a1 = 1,公差d 0,且第二项、第五项、第十四项分别是等比数列bn的第二项、第三项、第四项()求数列an与bn的通项公式;8.已知数列的前项和为,且满足()求数列的通项公式;9.设数列满足,()求数列的通项;10.数列的前项和为,()求数列的通项;11.已知数列和满足:,(),且是以为公比的等比数列(I)证明:;(II)若,证明数列是等比数列;B组1. 设数列an的前项的和Sn=(an-1) (n)()求a1;a2; ()求证数列an为等比数列2. 已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上()求数列的通项公式;3.已知数列的前n项和Sn满足()写出数列的前3项 ()求数列的通项公式4.已知数列满足,求数列的通项公式。5 已知数列满足,求数列的通项公式。6. 已知数列满足,求数列的通项公式。7. 已知数列满足,求数列的通项公式。8. 已知数列满足,求数列的通项公式。9.已知数列满足,求数列的通项公式。10. 已知数列满足,求数列的通项公式。答案:1. 解: ()由,得 又,即,得. ()当n1时,得所以是首项,公比为的等比数列2. 解:当n=1时,有:S1=a1=2a1+(-1) a1=1;当n=2时,有:S2=a1+a2=2a2+(-1)2a2=0;当n=3时,有:S3=a1+a2+a3=2a3+(-1)3a3=2;综上可知a1=1,a2=0,a3=2;由已知得:化简得:上式可化为:故数列是以为首项, 公比为2的等比数列.故 数列的通项公式为:.3. 解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,anSnSn1(3n22n)6n5.当n1时,a1S13122615,所以,an6n5 ().6. 方法(1):构造公比为2的等比数列,用待定系数法可知方法(2):构造差型数列,即两边同时除以 得:,从而可以用累加的方法处理方法(3):直接用迭代的方法处理:7. 分析:-由得-由得,得-由得,得 -用代得 -:即- 8. 解:两边除以,得,则,故数列是以为首,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。9 得则所以数列的通项公式为1 则所以11. 解:两边除以,得,则,故因此,则12. 解:因为,所以,则,则所以数列的通项公式为13. 解:因为所以所以式式得则则所以由,取n=2得,则,又知,则,代入得。14. 解:设将代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省宁德市部分学校2024-2025学年高一下学期期中考试历史试题(含答案)
- 吉林省松原第五中学2024-2025学年初三七校联合体考前冲刺交流考试化学试题含解析
- 吉林医药学院《食品微生物检验技术》2023-2024学年第二学期期末试卷
- 山西工商学院《建筑工程预算》2023-2024学年第二学期期末试卷
- 浙江省宁波市宁波华茂国际校2025年初三第四次月考试题含答案
- 望谟县2024-2025学年小升初常考易错数学检测卷含解析
- 吉首大学《版本目录学》2023-2024学年第一学期期末试卷
- 西北大学现代学院《临床检验基础》2023-2024学年第二学期期末试卷
- 湖北省黄石经济技术开发区2024-2025学年三年级数学第二学期期末复习检测试题含解析
- 西交利物浦大学《组织行为学》2023-2024学年第二学期期末试卷
- 常用急救技术-环甲膜穿刺、切开术(急救技术课件)
- 机械加工环保措施方案
- 小学语文-快乐读书吧-《七色花》阅读推进课教学课件设计
- 2023年江苏盐城音乐美术中考试卷及答案
- 土木工程毕业设计计算书(含建筑设计+结构设计+设计图纸)
- 台湾问题专题解读
- 2023年全国测绘生产成本费用定额
- GB/T 28758-2012起重机检查人员的资格要求
- GB 18489-2001管形荧光灯和其他放电灯线路用电容器一般要求和安全要求
- 设计变更指令单
- 《高速铁路无砟轨道修理规则》第九章维修工机具、常备材料与作业车辆停留线课件
评论
0/150
提交评论