免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2 椭圆的简单几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等二、教材分析1重点:椭圆的几何性质及初步运用(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结)2难点:椭圆离心率的概念的理解(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,)3疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变(解决办法:利用方程分析椭圆性质之前就先给学生说明)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结四、教学过程(一)复习提问1椭圆的定义是什么?2椭圆的标准方程是什么?3.椭圆中a,b,c的关系是?学生口述,教师板书(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b0)来研究椭圆的几何性质说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变1范围即|x|a,|y|b,这说明椭圆在直线x=a和直线y=b所围成的矩形里(图2-18)注意结合图形讲解,并指出描点画图时,就不能取范围以外的点2对称性先请大家阅读课本椭圆的几何性质2设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的” 呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称类似可以证明其他两个命题同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心3顶点只须令x=0,得y=b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形根据前面所学有关知识画出下列图形(1) (2)4离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义先分析椭圆的离心率e的取值范围:ac0, 0e1再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了标准方程范围|x| a,|y| b对称性关于x轴、y轴成轴对称;关于原点成中心对称顶点坐标(a,0)、(-a,0)、(0,b)、(0,-b)焦点坐标(c,0)、(-c,0)半轴长长半轴长为a,短半轴长为b. ab离心率a、b、c的关系a=b+c标准方程范围|x| a,|y| b|x| b,|y| a对称性关于x轴、y轴成轴对称;关于原点成中心对称同前顶点坐标(a,0)、(-a,0)、(0,b)、(0,-b)(b,0)、(-b,0)、(0,a)、(0,-a)焦点坐标(c,0)、(-c,0)(0 , c)、(0, -c)半轴长长半轴长为a,短半轴长为b. ab同前离心率同前a、b、c的关系a=b+c同前 (三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1例1 已知椭圆16x2+25y2=400,它的长轴长是: 。短轴长是: 。焦距是: 。 离心率等于: 。焦点坐标是: 。顶点坐标是: 。 外切矩形的面积等于: 。并用描点法画出它的图形本例前一部分请一个同学板演,教师予以订正,估计不难完成后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19)要强调:利用对称性可以使计算量大大减少练习1.已知椭圆方程为6x+y=6它的长轴长是: 。短轴长是: 。焦距是: .离心率等于: 。焦点坐标是: 。顶点坐标是: 。 外切矩形的面积等于: 。 例2过适合下列条件的椭圆的标准方程:(1)经过点P(-3,0) 、Q(0,-2) ;(2)长轴长等于20,离心率等于解:(1)由题意a=3,b=2,又长轴在x轴上,所以,椭圆的标准方程为.(2)由已知2a=20,e=. a=10,c=6, ,所以椭圆的标准方程为或 .例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。椭圆的标准方程为或 .(四)小结本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 备战2025年中考语文课内文言文(统编版)20《与朱元思书》三年中考真题+模拟题(学生版+解析)
- 股东平等原则与对赌协议书(2篇)
- 南京工业大学浦江学院《税法二》2022-2023学年第一学期期末试卷
- 殡仪馆施工组织设计
- 方爷爷和圆奶奶说课稿
- 肚子里的故事说课稿
- 《中 国美食》说课稿
- 《液体的压强》说课稿
- 南京工业大学浦江学院《公共事业管理》2023-2024学年第一学期期末试卷
- 八年级第六单元《三峡》说课稿
- 卒中治疗中心组织结构
- (完整版)英语名词单复数练习题带答案
- 国学情景剧剧本
- 煤矿皮带智能化集控系统PPT教学讲授课件
- 分数乘除法整理复习(课堂PPT)
- 杭州会展业发展与对策研究文献综述
- 完整版方法验证报告模板最终
- 电力管道资料表格(共30页)
- 大班科学活动教案《豆豆家族》含PPT课件
- 【精品试卷】部编人教版(统编)一年级上册语文第一单元测试卷含答案
- 金属有机化学ppt课件
评论
0/150
提交评论