小波变换ppt课件.ppt_第1页
小波变换ppt课件.ppt_第2页
小波变换ppt课件.ppt_第3页
小波变换ppt课件.ppt_第4页
小波变换ppt课件.ppt_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2002年10月9日 2002秋季学期网上课程多媒体技术基础与应用 MultimediaFundamentalsandApplications FacetoFace2of4 林福宗智能技术与系统国家重点实验室2002年10月9日 2002年10月9日 小波变换与应用 一 小波变换1 小波2 小波变换3 离散小波变换二 Haar小波变换1 哈尔函数2 求均值和差值3 哈尔变换的特性4 一维哈尔小波变换5 二维哈尔小波变换三 阅读和练习作业 2002年10月9日 一 WaveletTransform 小波分析是近十几年才发展起来并迅速应用到图像处理和语音分析等众多领域的一种数学工具 它是继110多年前的傅立叶 JosephFourier 分析之后的一个重大突破 无论是对古老的自然学科还是对新兴的高新技术应用学科都产生了强烈冲击 小波理论是应用数学的一个新领域 要深入理解小波理论需要用到比较多的数学知识 本教学提纲企图从工程应用角度出发 用比较直观的方法来介绍小波变换和它的应用 为读者深入研究小波理论和应用提供一些背景材料 2002年10月9日 1 Whatiswavelet 一种函数具有有限的持续时间 突变的频率和振幅波形可以是不规则的 也可以是不对称的在整个时间范围里的幅度平均值为零比较正弦波 2002年10月9日 部分小波波形 2002年10月9日 小波的定义 Waveletsareaclassofafunctionsusedtolocalizeagivenfunctioninbothspaceandscaling Afamilyofwaveletscanbeconstructedfromafunction sometimesknownasa motherwavelet whichisconfinedinafiniteinterval Daughterwavelets arethenformedbytranslation b andcontraction a Waveletsareespeciallyusefulforcompressingimagedata sinceawavelettransformhaspropertieswhichareinsomewayssuperiortoaconventionalFouriertransform 2002年10月9日 Anindividualwaveletcanbedefinedby 2002年10月9日 2 WaveletTransform 老课题函数的表示方法新方法Fourier Haar wavelettransform 2002年10月9日 1 1807 JosephFourier 傅立叶理论指出 一个信号可表示成一系列正弦和余弦函数之和 叫做傅立叶展开式 用傅立叶表示一个信号时 只有频率分辨率而没有时间分辨率 这就意味我们可以确定信号中包含的所有频率 但不能确定具有这些频率的信号出现在什么时候 为了继承傅立叶分析的优点 同时又克服它的缺点 人们一直在寻找新的方法 2002年10月9日 傅立叶变换的定义 Amathematicaldescriptionoftherelationshipbetweenfunctionsoftimeandcorrespondingfunctionsoffrequency amapforconvertingfromonedomaintotheother Forexample ifwehaveasignalthatisafunctionoftime animpulseresponse thentheFourierTransformwillconvertthattimedomaindataintofrequencydata forexample afrequencyresponse 2002年10月9日 2 1910 AlfredHaar发现Haar小波 哈尔 AlfredHaar 对在函数空间中寻找一个与傅立叶类似的基非常感兴趣 1909年他发现了小波 1910年被命名为Haarwavelets他最早发现和使用了小波 2002年10月9日 3 1945 Gabor提出STFT 20世纪40年代Gabor开发了STFT shorttimeFouriertransform STFT的时间 频率关系图 2002年10月9日 4 1980 Morlet提出了CWT CWT continuouswavelettransform 20世纪70年代 当时在法国石油公司工作的年轻的地球物理学家JeanMorlet提出了小波变换WT wavelettransform 的概念 20世纪80年代 从STFT开发了CWT 2002年10月9日 Definition BasisFunctions asetoflinearlyindependentfunctionsthatcanbeused e g asaweightedsum toconstructanygivensignal where a scalevariable 缩放因子k timeshift 时间平移h waveletfunction 小波函数用y scaled dilated andshifted translated Motherwaveletfunction 在CWT中 scale和position是连续变化的 2002年10月9日 缩放 scaled 的概念 例1 正弦波的算法 2002年10月9日 缩放 scaled 的概念 续 例2 小波的缩放 2002年10月9日 平移 translation 的概念 2002年10月9日 5 CWT的变换过程 可分成如下5个步骤步骤1 把小波和原始信号的开始部分进行比较步骤2 计算系数c 该系数表示该部分信号与小波的近似程度 系数c的值越高表示信号与小波越相似 因此系数c可以反映这种波形的相关程度步骤3 把小波向右移 距离为 得到的小波函数为 然后重复步骤1和2 再把小波向右移 得到小波 重复步骤1和2 按上述步骤一直进行下去 直到信号结束步骤4 扩展小波 例如扩展一倍 得到的小波函数为步骤5 重复步骤1 4 2002年10月9日 a 二维图 2002年10月9日 b 三维图连续小波变换分析图 2002年10月9日 6 三种变换的比较 2002年10月9日 7 1984 subbandcoding BurtandAdelson SBC subbandcoding 的基本概念 把信号的频率分成几个子带 然后对每个子带分别进行编码 并根据每个子带的重要性分配不同的位数来表示数据20世纪70年代 子带编码开始用在语音编码上20世纪80年代中期开始在图像编码中使用1986年Woods J W 等人曾经使用一维正交镜像滤波器组 quadraturemirrorfilterbanks QMF 把信号的频带分解成4个相等的子带 2002年10月9日 图 a 正交镜像滤波器 QMF 2002年10月9日 图中的符号表示频带降低1 2 HH表示频率最高的子带 LL表示频率最低的子带 这个过程可以重复 直到符合应用要求为止 这样的滤波器组称为分解滤波器树 decompositionfiltertrees 图 b 表示其相应的频谱 2002年10月9日 8 20世纪80年代 Mallat Meyer等人提出multiresolutiontheory法国科学家Y Meyer创造性地构造出具有一定衰减性的光滑函数 他用缩放 dilations 与平移 translations 均为2的j次幂的倍数构造了平方可积的实空间L2 R 的规范正交基 使小波得到真正的发展小波变换的主要算法由法国的科学家StephaneMallat提出S Mallat于1988年在构造正交小波基时提出了多分辨率分析 multiresolutionanalysis 的概念 从空间上形象地说明了小波的多分辨率的特性提出了正交小波的构造方法和快速算法 叫做Mallat算法 该算法统一了在此之前构造正交小波基的所有方法 它的地位相当于快速傅立叶变换在经典傅立叶分析中的地位 2002年10月9日 小波分解得到的图像 2002年10月9日 9 著名科学家 InridDaubechies RonaldCoifman和VictorWickerhauser等著名科学家把这个小波理论引入到工程应用方面做出了极其重要的贡献InridDaubechies于1988年最先揭示了小波变换和滤波器组 filterbanks 之间的内在关系 使离散小波分析变成为现实在信号处理中 自从S Mallat和InridDaubechies发现滤波器组与小波基函数有密切关系之后 小波在信号 如声音信号 图像信号等 处理中得到极其广泛的应用 2002年10月9日 经过十几年的努力 这门学科的理论基础已经基本建立 并成为应用数学的一个新领域 这门新兴学科的出现引起了许多数学家和工程技术人员的极大关注 是国际科技界和众多学术团体高度关注的前沿领域 小波变换 2002年10月9日 3 离散小波变换 在计算连续小波变换时 实际上也是用离散的数据进行计算的 只是所用的缩放因子和平移参数比较小而已 不难想象 连续小波变换的计算量是惊人的 为了解决计算量的问题 缩放因子和平移参数都选择 j 0的整数 的倍数 使用这样的缩放因子和平移参数的小波变换叫做双尺度小波变换 dyadicwavelettransform 它是离散小波变换 discretewavelettransform DWT 的一种形式 2002年10月9日 使用离散小波分析得到的小波系数 缩放因子和时间关系如图所示 图 a 是20世纪40年代使用Gabor开发的短时傅立叶变换 shorttimeFouriertransform STFT 得到的时间 频率关系图图 b 是20世纪80年代使用Morlet开发的小波变换得到的时间 缩放因子 反映频率 关系图 3 离散小波变换 续 2002年10月9日 离散小波变换分析图 2002年10月9日 DWT变换方法 执行离散小波变换的有效方法是使用滤波器该方法是Mallat在1988年开发的 叫做Mallat算法这种方法实际上是一种信号的分解方法 在数字信号处理中称为双通道子带编码用滤波器执行离散小波变换的概念如图所示S表示原始的输入信号 通过两个互补的滤波器产生A和D两个信号A表示信号的近似值 approximations D表示信号的细节值 detail 2002年10月9日 在许多应用中 信号的低频部分是最重要的 而高频部分起一个 添加剂 的作用 犹如声音那样 把高频分量去掉之后 听起来声音确实是变了 但还能够听清楚说的是什么内容 相反 如果把低频部分去掉 听起来就莫名其妙 在小波分析中 近似值是大的缩放因子产生的系数 表示信号的低频分量 而细节值是小的缩放因子产生的系数 表示信号的高频分量 双通道滤波过程 2002年10月9日 离散小波变换可以被表示成由低通滤波器和高通滤波器组成的一棵树原始信号通过这样的一对滤波器进行的分解叫做一级分解信号的分解过程可以叠代 也就是说可进行多级分解 如果对信号的高频分量不再分解 而对低频分量连续进行分解 就得到许多分辨率较低的低频分量 形成如图所示的一棵比较大的树 这种树叫做小波分解树 waveletdecompositiontree 分解级数的多少取决于要被分析的数据和用户的需要 小波分解树 2002年10月9日 a 信号分解 b 系数结构 c 小波分解树小波分解树 2002年10月9日 小波包分解树 小波分解树表示只对信号的低频分量进行连续分解 如果不仅对信号的低频分量连续进行分解 而且对高频分量也进行连续分解 这样不仅可得到许多分辨率较低的低频分量 而且也可得到许多分辨率较低的高频分量 这样分解得到的树叫做小波包分解树 waveletpacketdecompositiontree 这种树是一个完整的二进制树 2002年10月9日 三级小波包分解树 图表示的是一棵三级小波包分解树 小波包分解方法是小波分解的一般化 可为信号分析提供更丰富和更详细的信息 例如 小波包分解树允许信号S表示为 2002年10月9日 降采样过程 在使用滤波器对真实的数字信号进行变换时 得到的数据将是原始数据的两倍 例如 如果原始信号的数据样本为1000个 通过滤波之后每一个通道的数据均为1000个 总共为2000个 根据尼奎斯特 Nyquist 采样定理就提出了降采样 downsampling 的方法 即在每个通道中每两个样本数据取一个 得到的离散小波变换的系数 coefficient 分别用cD和cA表示 2002年10月9日 降采样过程 如图所示 图中的符号表示降采样 2002年10月9日 小波变换的定义 AtransformwhichlocalizesafunctionbothinspaceandscalingandhassomedesirablepropertiescomparedtotheFouriertransform Thetransformisbasedonawaveletmatrix whichcanbecomputedmorequicklythantheanalogousFouriermatrix Analternativetothediscretecosinetransform DCT thewavelettransformchangesdata suchasvideodata intothesumofvaryingfrequencywavelets WaveletsaresometimesusedinsteadoftheDCTbecausetheyaremoreversatileanddontslowdownasmuchwithlargerimagesastheDCTdoes IntelsIndeotechnologymakesuseofwavelets emulationmaster gloss html 2002年10月9日 HaarTransformAone dimensionaltransformwhichmakesuseoftheHaarfunctions H Transform HaarFunctionReferencesHaar A 1999 2003WolframResearch Inc header H TransformAtwo dimensionalgeneralizationoftheHaartransformwhichisusedforthecompressionofastronomicalimages Thealgorithmconsistsofdividingtheimageintoblocksofpixels callingthepixelsintheblock and Foreachblock computethefourcoefficientsConstruct 二 Haar小波变换 2002年10月9日 1 哈尔函数 哈尔基函数基函数是生成矢量空间Vj而定义的一组线性无关的函数 可以用来构造任意给定的信号 也称尺度函数 scalingfunction 用符号Vj表示 哈尔小波函数哈尔小波函数是生成矢量的一组线性无关的函数 用符号Wj表示 矢量空间Wj中的小波可用来表示一个函数在矢量空间中不能表示的部分 见 多媒体技术基础 第2版 8 2 2002年10月9日 2 哈尔变换原理 假设两个信号的数值分别为a和b 计算它们的和与差 从s和d重新获得a和b 2002年10月9日 哈尔变换举例 例 假设有一幅分辨率只有4个像素的一维图像 对应的像素值或者叫做图像位置的系数分别为 9735 计算它的哈尔小波变换系数步骤1 求均值 averaging 计算相邻像素对的平均值 得到一幅分辨率比较低的新图像 它的像素数目变成了2个 即新的图像的分辨率是原来的1 2 相应的像素值为 84 2002年10月9日 哈尔变换举例 续 步骤2 求差值 differencing 用2个像素表示这幅图像时 图像的信息已经部分丢失 为了能够从由2个像素组成的图像重构出由4个像素组成的原始图像 就需要存储一些图像的细节系数 detailcoefficient 以便在重构时找回丢失的信息 原始图像可用下面的两个平均值和两个细节系数表示 841 1 步骤3 重复步骤1和2把由第一步分解得到的图像进一步分解成分辨率更低的图像和细节系数 在这个例子中 分解到最后 就用一个像素的平均值6和三个细节系数2 1和 1表示整幅图像 621 1 2002年10月9日 哈尔变换过程 把由4像素组成的一幅图像用一个平均像素值和三个细节系数表示这个过程就叫做哈尔小波变换 Haarwavelettransform 也称哈尔小波分解 Haarwaveletdecomposition 这个概念可以推广到使用其他小波基的变换 2002年10月9日 3 哈尔变换的特性 从这个例子中我们可以看到 变换过程中没有丢失信息 因为能够从所记录的数据中重构出原始图像 对这个给定的变换 我们可以从所记录的数据中重构出各种分辨率的图像 例如 在分辨率为1的图像基础上重构出分辨率为2的图像 在分辨率为2的图像基础上重构出分辨率为4的图像通过变换之后产生的细节系数的幅度值比较小 这就为图像压缩提供了一种途径 例如 去掉一些微不足道的细节系数并不影响对重构图像的理解 2002年10月9日 4 一维哈尔小波变换 求均值和差值的过程实际上就是一维小波变换的过程 现在用数学方法重新描述小波变换的过程 2002年10月9日 1 哈尔基函数 基函数是一组线性无关的函数 可以用来构造任意给定的信号 如用基函数的加权和表示 定义了基和矢量空间 就可以把由2j个像素组成的一维图像看成为矢量空间中的一个矢量 最简单的基函数是哈尔基函数 Haarbasisfunction 哈尔基函数在1909年提出 它是由一组分段常值函数 piecewise constantfunction 组成的函数集 这个函数集定义在半开区间上 每一个分段常值函数的数值在一个小范围里是 1 其他地方为 0 以图像为例并使用线性代数中的矢量空间来说明哈尔基函数 2002年10月9日 这4个常值函数就是构成矢量空间V2的基 哈尔基函数 续1 2002年10月9日 哈尔基函数 续2 为了表示矢量空间中的矢量 每一个矢量空间Vj都需要定义一个基 basis 为生成矢量空间而定义的基函数也叫做尺度函数 scalingfunction 这种函数通常用符号表示 哈尔基函数定义为 2002年10月9日 哈尔基函数 续3 哈尔基尺度函数定义为 其中 j为尺度因子 改变j使函数图形缩小或者放大 i为平移参数 改变i使函数沿轴方向平移 空间矢量Vj定义为 其中 表示线性生成 linearspan 2002年10月9日 2 哈尔小波函数 小波函数通常用表示 与框函数相对应的小波称为基本哈尔小波函数 Haarwaveletfunctions 并由下式定义 哈尔小波尺度函数定义为 2002年10月9日 哈尔小波函数 续1 用小波函数构成的矢量空间用Wj表示为 根据哈尔小波函数的定义 可以写出生成 W0 W1和W2等矢量空间的小波函数 其中 SP表示线性生成 j为尺度因子 改变j使函数图形缩小或者放大 i为平移参数 改变i使函数沿轴方向平移 2002年10月9日 哈尔小波函数 续2 生成矢量空间W2的哈尔小波 2002年10月9日 哈尔小波函数 续3 生成矢量空间W2的哈尔小波 2002年10月9日 3 哈尔小波变换过程 1 用V2中的哈尔基表示图像 9735 有2j 22 4个像素 因此可以用生成矢量空间中的框基函数的线性组合表示 其中的系数是4个正交的像素值 9735 因此 2002年10月9日 哈尔小波变换过程 续1 图I x 用V2中的哈尔基表示 2002年10月9日 用V0 W0和W1中的函数表示图像生成矢量空间V0的基函数为 生成矢量空间W0的小波函数为 生成矢量空间W1的小波函数为和 根据 哈尔小波变换过程 续2 I x 可表示成 2002年10月9日 其中 4个系数 和就是原始图像通过哈尔小波变换所得到的系数 用来表示整幅图像的平均值和不同分辨率下的细节系数 4个函数 和就是构成空间V2的基 哈尔小波变换过程 续3 用图表示为 2002年10月9日 一幅图像是一个二维的数据阵列 进行小波变换时可以对阵列的每一行进行变换 然后对行变换之后的阵列的每一列进行变换 最后对经过变换之后的图像数据阵列进行编码1 求均值与求差值使用求均值和求差值的方法 对矩阵的每一行进行计算3 使用线性代数由于图像可用矩阵表示 使用N个矩阵M1 M2 和MN同样可以对图像矩阵进行求平均值和求差值 这N个矩阵分别是第一 第二和第N次分解图像时所构成的矩阵 5 二维哈尔小波变换 2002年10月9日 二维哈尔小波变换 续1 用小波对图像进行变换有两种方法 一种叫做标准分解 standarddecomposition 另一种叫做非标准分解 nonstandarddecomposition 标准分解方法是指首先使用一维小波对图像每一行的像素值进行变换 产生每一行像素的平均值和细节系数 然后使用一维小波对这个经过行变换的图像的列进行变换 产生这个图像的平均值和细节系数 标准分解的过程如下 2002年10月9日 pro

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论