




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人工智能实验实验六 遗传算法求解TSP问题一、实验目的w 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。二、实验内容1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。4、上交源代码。三、遗传算法求解TSP问题的流程图四、遗传算法求解不同规模的TSP问题的算法性能(1) 遗传算法执行方式说明:l 适应度值计算方法:当前路线的路径长度l 个体选择概率分配方法:适应度比例方法l 选择个体方法:轮盘赌选择l 交叉类型:PMX交叉l 变异类型: 两点互换变异(2)实验模拟结果:城市个数时间(ms)51692510166301518833202259625241593030289353523940386084540032504375755477466058143655994270643617571417图1-1(3)分析由图1-1可知,遗传算法执行时间随着TSP问题规模的增大而增大,并且大致为线性增长。五、不同参数下的计算结果对比(1)种群规模对算法结果的影响实验次数:10最大迭代步数:100交叉概率:0.85变异概率:0.15表1-1种群规模适应度值最优路径1025.2644-5-8-7-6-3-1-0-9-22026.34282-9-1-0-3-6-7-5-8-43025.16521-3-6-7-5-8-4-2-9-05025.16520-1-3-6-7-5-8-4-2-98025.16529-0-1-3-6-7-5-8-4-210025.16521-0-9-2-4-8-5-7-6-315025.16525-8-4-2-9-0-1-3-6-720025.16521-3-6-7-5-8-4-2-9-025025.16523-1-0-9-2-4-8-5-7-630025.16525-8-4-2-9-0-1-3-6-7如表1-1所示,显然最短路径为25.1652m,最优路径为1-0-9-1-3-6-7-5-8-4-2或3-1-0-9-2-4-8-5-7-6,注意到这是一圈,顺时针或者逆时针都可以。当种群规模为10,20时,并没有找到最优解。(2)交叉概率对算法结果的影响实验次数:15种群规模:25最大迭代步数:100变异概率:0.15实验结果:表1-2交叉概率最好适应度最差适应度平均适应度最优解运行时间0.00128.044736.656732.60029-2-6-0-5-4-8-7-3-13100.0127.093534.994332.14957-8-3-1-9-2-6-0-5-42600.128.044735.303331.93727-3-1-9-2-6-0-5-4-83000.1528.044734.117531.21830-5-4-8-7-3-1-9-2-62700.228.710833.951230.90353-1-9-2-6-5-0-4-7-82800.2528.044735.162330.74561-3-7-8-4-5-0-6-2-92600.327.093531.994129.94288-3-1-9-2-6-0-5-4-72900.3527.093532.808530.99459-1-3-8-7-4-5-0-6-22700.427.093532.531330.15341-3-8-7-4-5-0-6-2-92790.4527.093533.201430.17578-3-1-9-2-6-0-5-4-74560.528.093433.630730.90265-0-2-6-9-1-3-8-7-46630.5527.093533.523329.13041-9-2-6-0-5-4-7-8-35200.627.093533.251230.78363-1-9-2-6-0-5-4-7-85460.6528.044733.700330.93715-4-8-7-3-1-9-2-6-05960.727.093532.092729.95029-1-3-8-7-4-5-0-6-25710.7528.044732.448830.36990-5-4-8-7-3-1-9-2-65590.827.093532.155129.93827-4-5-0-6-2-9-1-3-83580.8527.093534.539930.35945-0-6-2-9-1-3-8-7-43600.927.093532.627330.696-0-5-4-7-8-3-1-9-23750.9527.093532.467229.9196-2-9-1-3-8-7-4-5-0476(注:红色表示非最优解)在该情况下,交叉概率过低将使搜索陷入迟钝状态,得不到最优解。(3)变异概率对算法结果的影响实验次数:10种群规模:25最大迭代步数:100交叉概率:0.85实验结果:表1-3变异概率最好适应度最差适应度平均适应度最优解运行时间0.00129.471734.73232.49110-6-2-1-9-3-8-7-4-52450.0129.044634.659132.37148-4-5-0-2-6-9-1-3-72740.128.093434.01130.94175-0-2-6-9-1-3-8-7-42500.1527.093532.09330.25686-0-5-4-7-8-3-1-9-22460.227.093532.234930.31448-7-4-5-0-6-2-9-1-32820.2527.093532.71830.15724-5-0-6-2-9-1-3-8-72450.327.093532.448830.28540-5-4-7-8-3-1-9-2-62520.3527.093533.316730.77481-3-8-7-4-5-0-6-2-92660.429.044634.370531.30412-0-5-4-8-7-3-1-9-63620.4527.093531.37429.68162-6-0-5-4-7-8-3-1-94380.527.093532.375230.22112-9-1-3-8-7-4-5-0-64310.5527.093533.381930.66231-3-8-7-4-5-0-6-2-94920.628.093433.251230.361-3-8-7-4-5-0-2-6-94170.6527.093532.749130.02013-1-9-2-6-0-5-4-7-84340.728.710832.423830.7851-3-8-7-4-0-5-6-2-94320.7527.093531.892830.24511-9-2-6-0-5-4-7-8-34750.828.093431.613530.34719-1-3-8-7-4-5-0-2-63270.8529.66233.239231.15852-9-1-3-7-8-4-0-5-63140.928.044732.038730.41520-5-4-8-7-3-1-9-2-63960.9528.044731.303630.00679-1-3-7-8-4-5-0-6-2436又表1-3可知,当变异概率过大或过低都将导致无法得到最优解。注:(2)(3)的实验数据与(1)的实验数据不同,详见附录。六、不同变异策略和个体选择概率分配策略对算法结果的影响(1)两点互换变异与插入变异的比较:l 试验次数(CASNUM):10l 城市数(POINTCNT):10l 种群规模(POPSIZE):100l 最大迭代步数(GENERATIONS):100l 交叉概率(PC):0.85l 变异概率(PM):0.15l 选择个体方法:轮盘赌选择l 交叉类型:PMX交叉l 个体选择概率分配方法:适应度比例方法a. 变异类型: 两点互换变异表1-4两点互换变异程序结果序号最好适应度最差适应度平均适应度最优解运行时间128.093430.422929.08916-2-0-5-4-7-8-3-1-91199227.093531.141728.98414-5-0-6-2-9-1-3-8-71678327.093530.422829.06040-5-4-7-8-3-1-9-2-61940427.093530.370328.87871-3-8-7-4-5-0-6-2-91756527.093531.061929.07553-1-9-2-6-0-5-4-7-81885627.093531.158929.39422-6-0-5-4-7-8-3-1-91936728.044731.061929.76486-2-9-1-3-7-8-4-5-01772829.044631.347529.84154-5-0-2-6-9-1-3-7-81980927.093530.614329.0590-6-2-9-1-3-8-7-4-519401027.093530.558529.08119-2-6-0-5-4-7-8-3-118721127.093531.017129.42640-5-4-7-8-3-1-9-2-615171227.093531.303629.24141-9-2-6-0-5-4-7-8-315411327.093532.025529.07890-6-2-9-1-3-8-7-4-515171427.093531.51628.89060-6-2-9-1-3-8-7-4-513451527.093530.422829.02266-0-5-4-7-8-3-1-9-213771627.093530.408128.90810-6-2-9-1-3-8-7-4-518531727.093530.408129.33167-8-3-1-9-2-6-0-5-415221827.093530.020328.52431-3-8-7-4-5-0-6-2-916011928.044731.140429.5672-9-1-3-7-8-4-5-0-616092027.093531.141729.53597-4-5-0-6-2-9-1-3-81311平均值27.336130.878229.18771657b. 变异类型: 插入变异表1-5插入变异程序结果序号最好适应度最差适应度平均适应度最优解运行时间127.093531.475328.84532-6-0-5-4-7-8-3-1-91388227.093529.66228.91685-0-6-2-9-1-3-8-7-41355327.093529.663128.9021-9-2-6-0-5-4-7-8-31637428.044730.524129.51194-5-0-6-2-9-1-3-7-81164527.093531.057529.46822-6-0-5-4-7-8-3-1-91245627.093529.66228.55462-6-0-5-4-7-8-3-1-91222728.044730.820529.7483-1-9-2-6-0-5-4-8-71148827.093530.524129.39071-9-2-6-0-5-4-7-8-31742927.093530.42328.68780-6-2-9-1-3-8-7-4-520641027.093530.408128.725-0-6-2-9-1-3-8-7-415181127.093531.37429.32824-5-0-6-2-9-1-3-8-712401227.093530.52328.55441-3-8-7-4-5-0-6-2-912041327.093530.820529.05080-6-2-9-1-3-8-7-4-517341427.093531.117729.59050-5-4-7-8-3-1-9-2-615321527.093530.52329.19044-5-0-6-2-9-1-3-8-714831627.093530.408128.80615-0-6-2-9-1-3-8-7-412821727.093531.763929.45916-0-5-4-7-8-3-1-9-214851827.093531.158929.16144-5-0-6-2-9-1-3-8-716011927.093530.408128.59742-6-0-5-4-7-8-3-1-915072027.093530.614328.80363-1-9-2-6-0-5-4-7-81234平均值27.1886230.646529.06431439分析:两点互换变异20次模拟中,4次得到非最优解;而插入变异只有2次;插入变异的最好适应度平均值比两点互换变异小0.14755,最差适应度平均值和总的适应度平均值都比两点互换下,并且在Release下,运行时间前者比后者快218.3ms。可见在该条件下(交叉概率,变异概率,种群规模等),插入变异比两点互换变异的算法效果要好。(2)个体选择分配策略l 试验次数(CASNUM):10l 城市数(POINTCNT):10l 种群规模(POPSIZE):100l 最大迭代步数(GENERATIONS):100l 交叉概率(PC):0.85l 变异概率(PM):0.15l 选择个体方法:轮盘赌选择l 交叉类型:PMX交叉l 变异类型: 两点互换变异a. 个体选择概率分配方法:适应度比例方法同表1-4b. 个体选择概率分配方法:非线性排序方式表1-6非线性排序方式程序结果序号最好适应度最差适应度平均适应度最优解运行时间127.093532.172130.09041-9-2-6-0-5-4-7-8-3824228.044731.29729.99794-5-0-6-2-9-1-3-7-8865328.093432.168330.56012-0-5-4-7-8-3-1-9-6895427.093532.097330.34723-1-9-2-6-0-5-4-7-81067527.093531.51629.85314-5-0-6-2-9-1-3-8-7887627.093531.40829.46375-0-6-2-9-1-3-8-7-4727727.093531.374229.94763-1-9-2-6-0-5-4-7-8651829.523131.800930.55430-5-4-7-8-1-3-9-2-6901927.093532.714730.3910-5-4-7-8-3-1-9-2-67491029.523131.568830.23859-3-1-8-7-4-5-0-6-28401128.044731.763930.26173-7-8-4-5-0-6-2-9-110441228.044731.630830.32671-3-7-8-4-5-0-6-2-97321327.093531.568829.43320-5-4-7-8-3-1-9-2-67371428.093431.157629.96464-5-0-2-6-9-1-3-8-76721528.044731.662629.77615-0-6-2-9-1-3-7-8-48231628.093431.559130.34732-0-5-4-7-8-3-1-9-67321727.093531.61829.59887-8-3-1-9-2-6-0-5-46971827.093532.71829.70331-3-8-7-4-5-0-6-2-967
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解析宠物饮食的实证研究试题及答案
- 2025宁夏天元锰业集团招聘6004人笔试参考题库附带答案详解
- 2025山东聊城市市属企业统一招聘24人笔试参考题库附带答案详解
- 汽车发动机维修与检测试题及答案
- 咸阳市兴平市公费师范生招聘考试真题2024
- 2025四川南充临江东方投资集团有限公司合同制员工招聘15人笔试参考题库附带答案详解
- 2025国网西藏电力有限公司高校毕业生招聘约305人(第二批)笔试参考题库附带答案详解
- 静电面试题目大全及答案
- 随机变量的性质与应用试题及答案
- 2025中核集团中核资本校园招聘笔试参考题库附带答案详解
- 第二单元+新音乐启蒙+课件【高效课堂精研】高中音乐粤教花城版必修音乐鉴赏
- 2024年云南省昆明市五华区小升初数学试卷
- 2025年全球创新生态系统的未来展望
- 体育业务知识培训课件
- 《淞沪会战》课件
- 《社区共治共建共享研究的国内外文献综述》4300字
- 软件代码审计与测试作业指导书
- 上消化道出血护理疑难病例讨论记
- 城市轨道交通自动售票机
- 环境设计专业考察课程教学大纲
- 2024版互联网企业股东合作协议书范本3篇
评论
0/150
提交评论