




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 运动的描述 匀变速直线运动的研究1、 机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周) 运动的描述典型例题:【例1】物体M从A运动到B,前半程平均速度为v1,后半程平均速度为v2,那么全程的平均速度是:()A(v1+v2)/2 B C D【例2】某人划船逆流而上,当船经过一桥时,船上一小木块掉在河水里,但一直航行至上游某处时此人才发现,便立即返航追赶,当他返航经过1小时追上小木块时,发现小木块距离桥有5400米远,若此人向上和向下航行时船在静水中前进速率相等。试求河水的流速为多大?【例3】一物体做匀变速直线运动,某时刻速度大小为4m/s,经过1s后的速度的大小为10m/s,那么在这1s内,物体的加速度的大小可能为 【例4】关于速度和加速度的关系,下列说法中正确的是( )A速度变化越大,加速度就越大 B速度变化越快,加速度越大C加速度大小不变,速度方向也保持不变D加速度大小不断变小,速度大小也不断变小匀变速直线运动规律 1、常用的结论s=aT 2,即任意相邻相等时间内的位移之差相等。可以推广到sm-sn=(m-n)aT 2,某段时间的中间时刻的即时速度等于该段时间内的平均速度。 ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。可以证明,无论匀加速还是匀减速,都有。2初速为零的匀变速直线运动前1秒、前2秒、前3秒内的位移之比为149第1秒、第2秒、第3秒内的位移之比为135前1米、前2米、前3米所用的时间之比为1第1米、第2米、第3米所用的时间之比为1()对末速为零的匀变速直线运动,可以相应的运用这些规律3、解题方法指导:解题步骤:(1)确定研究对象。(2)明确物体作什么运动,并且画出运动示意图。(3)分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。(4)确定正方向,列方程求解。(5)对结果进行讨论、验算。解题方法:(1)公式解析法:假设未知数,建立方程组。本章公式多,且相互联系,一题常有多种解法。要熟记每个公式的特点及相关物理量。(2)图象法:如用vt图可以求出某段时间的位移大小、可以比较vt/2与vS/2,以及追及问题。用st图可求出任意时间内的平均速度。(3)比例法:用已知的讨论,用比例的性质求解。(4)极值法:用二次函数配方求极值,追赶问题用得多。(5)逆向思维法:如匀减速直线运动可视为反方向的匀加速直线运动来求解。综合应用例析【例1】在光滑的水平面上静止一物体,现以水平恒力甲推此物体,作用一段时间后换成相反方向的水平恒力乙推物体,当恒力乙作用时间与恒力甲的作用时间相同时,物体恰好回到原处,此时物体的速度为v2,若撤去恒力甲的瞬间物体的速度为v1,则v2v1=?思考:在例1中,F1、F2大小之比为多少? 匀加速 匀速 匀减速甲 t1 t2 t3 乙s1 s2 s3【例2】一辆汽车沿平直公路从甲站开往乙站,起动加速度为2m/s2,加速行驶5秒,后匀速行驶2分钟,然后刹车,滑行50m,正好到达乙站,求汽车从甲站到乙站的平均速度?(t-3)s3s【例3】一物体由斜面顶端由静止开始匀加速下滑,最初的3秒内的位移为s1,最后3秒内的位移为s2,若s2-s1=6米,s1s2=37,求斜面的长度为多少? 【例4】物块以v0=4米/秒的速度滑上光滑的斜面,途经A、B两点,已知在A点时的速度是B点时的速度的2倍,由B点再经0.5秒物块滑到斜面顶点C速度变为零,A、B相距0.75米,求斜面的长度及物体由D运动到B的时间?DCA B C D【例5】一质点沿AD直线作匀加速直线运动,如图,测得它在AB、BC、CD三段的时间均为t,测得位移AC=L1,BD=L2,试求质点的加速度?【例6】一质点由A点出发沿直线AB运动,行程的第一部分是加速度为a1的匀加速运动,接着做加速度为a2的匀减速直线运动,抵达B点时恰好静止,如果AB的总长度为s,试求质点走完AB全程所用的时间t?【例7】一个做匀加速直线运动的物体,连续通过两段长为s的位移所用的时间分别为t1、t2,求物体的加速度?例8某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10 s内下降高度为1800 m,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.(1)求飞机在竖直方向上产生的加速度多大?(2)试估算成年乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅. 自由落体与竖直上抛运动结论:时间对称性 速度大小对称性注意:若物体在上升或下落中还受有恒空气阻力,则物体的运动不再是自由落体和竖直上抛运动,分别计算上升a上与下降a下的加速度,利用匀变速公式问题同样可以得到解决。例题分析:例1、 从距地面125米的高处,每隔相同的时间由静止释放一个小球队,不计空气阻力,g=10米/秒2,当第11个小球刚刚释放时,第1个小球恰好落地,试求:(1)相邻的两个小球开始下落的时间间隔为多大?(2)当第1个小球恰好落地时,第3个小球与第5个小球相距多远?(拓展)将小球改为长为5米的棒的自由落体,棒在下落过程中不能当质点来处理,但可选棒上某点来研究。例2、 在距地面25米处竖直上抛一球,第1秒末及第3秒末先后经过抛出点上方15米处,试求:(1)上抛的初速度,距地面的最大高度和第3秒末的速度;(2)从抛出到落地所需的时间(g=10m/s2)例3、 一竖直发射的火箭在火药燃烧的2S内具有3g的竖直向上加速度,当它从地面点燃发射后,它具有的最大速度为多少?它能上升的最大高度为多少?从发射开始到上升的最大高度所用的时间为多少?(不计空气阻力。G=10m/s2) 直线运动的图象匀变速直线运动的速度时间图象(t图) V Vt V .3O 0 t (1) 截距表示初速度(2) 比较速度变化的快慢,即加速度 p qABCvto p qvtq tp(3) 交叉点表示速度相等(4) 面积 = 位移 上正下负【例1】 一个固定在水平面上的光滑物块,其左侧面是斜面AB,右侧面是曲面AC。已知AB和AC的长度相同。两个小球p、q同时从A点分别沿AB和AC由静止开始下滑,比较它们到达水平面所用的时间A.p小球先到 B.q小球先到vaav1v2l1l1l2l2vt1t2tovmC.两小球同时到 D.无法确定【例2】 两支完全相同的光滑直角弯管(如图所示)现有两只相同小球a和a/ 同时从管口由静止滑下,问谁先从下端的出口掉出?(假设通过拐角处时无机械能损失) 【例3】一物体做加速直线运动,依次通过A、B、C三点,AB=BC。物体在AB段加速度为a1,在BC段加速度为a2,且物体在B点的速度为,则Aa1 a2 Ba1= a2 Ca1 a2 D不能确定【例4】蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心的距离L1=1m的A点处时,速度是v1=2cm/s。试问蚂蚁从A点爬到距巢中心的距离L2=2m的B点所需的时间为多少?相互作用【例1】如图所示,两物体重力分别为G1、G2,两弹簧劲度系数分别为k1、k2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G2,最后平衡时拉力F=G1+2G2,求该过程系统重力势能的增量。k2x2/k1G1x2G2x1x1/FG1G2k2k1 F练习1.关于两物体之间的弹力和摩擦力,下列说法中正确的是( )A.有摩擦力一定有弹力B.摩擦力的大小与弹力成正比C.有弹力一定有摩擦力D.弹力是动力,摩擦力是阻力2.如图,两本书A、B逐页交叉后叠放在一起并平放在光滑的水平桌面上,设每张书页的质量为5g,每本书均是200张,纸与纸之间的动摩擦因数为0.3,问至少要用多大的水平力才能将它们拉开?(g取10米/秒2)3、弹簧秤的读数是它受到的合外力吗?av相对【例2】 小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。例3、下面关于摩擦力的说法正确的是:A、阻碍物体运动的力称为摩擦力;B、滑动摩擦力方向总是与物体的运动方向相反;C、静摩擦力的方向不可能与运动方向垂直;D、接触面上的摩擦力总是与接触面平行。例4、 用一个水平推力F=Kt(K为恒量,t为时间)把一重为G的物体压在竖直的足够高的平整墙上,如图所示,从t=0开始物体所受的摩擦力f随时间t变化关系是哪一个? 力的合成和分解【例1物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为5N、 N,求这两个力的合力【例2将放在斜面上质量为m的物体的重力mg分解为下滑力F1和对斜面的压力F2,这种说法正确吗?【例3将一个力分解为两个互相垂直的力,有几种分法?几种有条件的力的分解已知两个分力的方向,求两个分力的大小时,有唯一解。已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。已知两个分力的大小,求两个分力的方向时,其分解不惟一。已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。用力的矢量三角形定则分析力最小值的规律:当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:F2min=F sin当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sin当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为FF1【例4质量为m的木块在推力F作用下,在水平地面上做匀速运动已知木块与地面间的动摩擦因数为,那么木块受到的滑动摩擦力为下列各值的哪个? Amg (mg+Fsin)(mg+Fsin) Fcos综合应用举例【例5水平横粱的一端A插在墙壁内,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,CBA30,如图甲所示,则滑轮受到绳子的作用力为(g=10m/s2)A50N B50N C100N D100NOPmgEq【例6已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直线OP向斜下方运动(OP和竖直方向成角),那么所加匀强电场的场强E的最小值是多少?A BGF1F2N【例7轻绳AB总长l,用轻滑轮悬挂重G的物体。绳能承受的最大拉力是2G,将A端固定,将B端缓慢向右移动d而使绳不断,求d的最大可能值。【例8一根长2m,重为G的不均匀直棒AB,用两根细绳水平悬挂在天花板上,如图所示,求直棒重心C的位置。【例9如图(甲)所示质量为m的球放在倾角为的光滑斜面上,试分析挡板AO与斜面间的倾角为多大时,AO所受压力最小? 共点力作用下物体的平衡一、物体的受力分析1明确研究对象2按顺序找力3只画性质力,不画效果力4需要合成或分解时,必须画出相应的平行四边形(或三角形)【例1如下图所示,木块在水平桌面上,受水平力F1 =10N,F2 =3N而静止,当撤去F1后,木块仍静止,则此时木块受的合力为 ( )A0 B水平向右,3N C水平向左,7N D水平向右,7N【例2】氢气球重10 N,空气对它的浮力为16 N,用绳拴住,由于受水平风力作用,绳子与竖直方向成30角,则绳子的拉力大小是_,水平风力的大小是_ 1静平衡问题的分析方法【例3如图甲所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡状态时,质量为m1的小球与O点的连线与水平线的夹角为=60。两小球的质量比为 ( )A B C D2动态平衡类问题的分析方法F1F2GGF2F1【例4 重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化?(F1逐渐变小,F2先变小后变大。当F2F1,即挡板与斜面垂直时,F2最小)【例5如图7所示整个装置静止时,绳与竖直方向的夹角为30。AB连线与OB垂直。若使带电小球A的电量加倍,带电小球B重新稳定时绳的拉力多大?3平衡中的临界、极值问题当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。可理解成“恰好出现”或“恰好不出现”。极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。【例7跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为的斜面上(如图l43(甲)所示),已知物体A的质量为m ,物体A与斜面的动摩擦因数为(tan),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围。FG【例8 用与竖直方向成=30斜向右上方,大小为F的推力把一个重量为G的木块压在粗糙竖直墙上保持静止。求墙对木块的正压力大小N和墙对木块的摩擦力大小f。4整体法与隔离法的应用mgFNOABPQ【例9 有一个直角支架AOB,AO水平放置,表面粗糙, OB竖直向下,表面光滑。AO上套有小环P,OB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和摩擦力f的变化情况是AFN不变,f变大 BFN不变,f变小 CFN变大,f变大 DFN变大,f变小5“稳态速度”类问题中的平衡【例12物体从高空下落时,空气阻力随速度的增大而增大,因此经过一段距离后将匀速下落,这个速度称为此物体下落的稳态速度。已知球形物体速度不大时所受的空气阻力正比于速度v,且正比于球半径r,即阻力f=krv,k是比例系数。对于常温下的空气,比例系数k=3.410-4Ns/m2。已知水的密度kg/m3,重力加速度为m/s2。求半径r=0.10mm的球形雨滴在无风情况下的稳态速度。F1A BG/2F1F2G/2CPOO6绳中张力问题的求解【例13】重G的均匀绳两端悬于水平天花板上的A、B两点。静止时绳两端的切线方向与天花板成角。求绳的A端所受拉力F1和绳中点C处的张力F2。 F27 解答平衡问题时常用的数学方法【例14】如图所示,在半径为R的光滑半球面正上方距球心h处悬挂一定滑轮,重为G的小球A用绕过滑轮的绳子被站在地面上的人拉住。人拉动绳子,在与球面相切的某点缓慢运动到接近顶点的过程中,试分析半球对小球的支持力N和绳子拉力F如何变化。针对训练1把重20N的物体放在倾角为30的粗糙斜面上,物体右端与固定在斜面上的轻弹簧相连接,如图所示,若物体与斜面间的最大静摩擦力为 12 N,则弹簧的弹力为( )A可以是22N,方向沿斜面向上 B可以是2N方向沿斜面向上C可以是2N,方向沿斜面向下 D可能为零2两个物体A和B,质量分别为M和m,用跨过定滑轮的轻绳相连, A静止于水平地面上,如图所示,不计摩擦力,A对绳的作用力的大小与地面对A的作用力的大小分别为()Amg,(Mm)g Bmg,MgC(Mm)g, M g D(M+m)g,(Mm)g3如图所示,当倾角为45时物体m处于静止状态,当倾角再增大一些,物体m仍然静止(绳子质量、滑轮摩擦不计)下列说法正确的是( )A绳子受的拉力增大B物林m对斜面的正压力减小C物体m受到的静摩擦力可能增大D物体m受到的静摩擦力可能减小4如图所示,两光滑硬杆AOB成角,在两杆上各套上轻环P、Q,两环用细绳相连,现用恒力F沿OB方向拉环Q ,当两环稳定时细绳拉力为( )AFsin BF/sin CFcos DF/cos5如图所示,一个本块A放在长木板B上,长木板B放在水平地面上在恒力F作用下,长木板B以速度v匀速运动,水平弹簧秤的示数为T下列关于摩擦力正确的是( )A木块A受到的滑动摩擦力的大小等于TB木块A受到的静摩擦力的大小等于TC若长木板B以2v的速度匀速运动时,木块A受到的摩擦力大小等于2TD若用2F的力作用在长木板上,木块A受到的摩擦力的大小等于T6如图所示,玻璃管内活塞P下方封闭着空气,P上有细线系住,线上端悬于O点,P的上方有高h的水银柱,如不计水银、活塞P与玻璃管的摩擦,大气压强为p0保持不变,则当气体温度升高时(水银不溢出)( ) A管内空气压强恒为(p0十gh)(为水银密度) B管内空气压强将升高 C细线上的拉力将减小 D玻璃管位置降低7如图(甲)所示,将一条轻而柔软的细绳一端拴在天花板上的A点另一端拴在竖直墙上的B点,A和B到O点的距离相等,绳的长度是OA的两倍。图(乙)所示为一质量可忽略的动滑轮K,滑轮下悬挂一质量为m的重物,设摩擦力可忽略,现将动滑轮和重物一起挂到细绳上,在达到平衡时,绳所受的拉力是多大?8长L的绳子,一端拴着半径为r,重为G的球,另一端固定在倾角为的光滑斜面的A点上,如图所示,试求绳子中的张力 牛顿运动定律知识网络: 【例1】在一艘匀速向北行驶的轮船甲板上,一运动员做立定跳远,若向各个方向都用相同的力,则 ( )A向北跳最远 B向南跳最远C向东向西跳一样远,但没有向南跳远 D无论向哪个方向都一样远【例2】某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见( ) A力是使物体产生运动的原因 B力是维持物体运动速度的原因C力是使物体速度发生改变的原因 D力是使物体惯性改变的原因【例3】如图中的甲图所示,重球系于线DC下端,重球下再系一根同样的线BA,下面说法中正确的是( )A在线的A端慢慢增加拉力,结果CD线拉断B在线的A端慢慢增加拉力,结果AB线拉断C在线的A端突然猛力一拉,结果AB线拉断D在线的A端突然猛力一拉,结果CD线拉断牛顿第三定律(12个字等值、反向、共线 同时、同性、两体、)【例4】汽车拉着拖车在水平道路上沿直线加速行驶,根据牛顿运动定律可知( )A汽车拉拖车的力大于拖车拉汽车的力 B汽车拉拖车的力等于拖车拉汽车的力C汽车拉拖车的力大于拖车受到的阻力 D汽车拉拖车的力等于拖车受到的阻力【例5】甲、乙二人拔河,甲拉动乙向左运动,下面说法中正确的是 ( )A做匀速运动时,甲、乙二人对绳的拉力大小一定相等B不论做何种运动,根据牛顿第三定律,甲、乙二人对绳的拉力大小一定相等C绳的质量可以忽略不计时,甲乙二人对绳的拉力大小一定相等D绳的质量不能忽略不计时,甲对绳的拉力一定大于乙对绳的拉力【例6】物体静止在斜面上,以下几种分析中正确的是 ( )A物体受到的静摩擦力的反作用力是重力沿斜面的分力B物体所受重力沿垂直于斜面的分力就是物体对斜面的压力C物体所受重力的反作用力就是斜面对它的静摩擦力和支持力这两个力的合力D物体受到的支持力的反作用力,就是物体对斜面的压力【例7】物体静止于水平桌面上,则 ( )桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力物体所受的重力和桌面对它的支持力是一对作用力与反作用力物体对桌面的压力就是物体的重力,这两个力是同一种性质的力物体对桌面的压力和桌面对物体的支持力是一对平衡的力应用牛顿第二定律解题的步骤明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=m1a1+m2a2+m3a3+mnan对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:F1=m1a1,F2=m2a2,Fn=mnan,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。F例9:如图,质量m=4kg的物体与地面间的动摩擦因数为=0.5,在与水平成=37角的恒力F作用下,从静止起向右前进t1=2.0s后撤去F,又经过t2=4.0s物体刚好停下。 求:F的大小、最大速度vm、总位移s。 超重和失重问题N N N a amg mg mg升降机中人m =50kg,a=2 m/s向上或向下,求秤的示数注意:、 物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化;、 发生“超重”或“失重”现象与物体速度方向无关,只决定于物体的加速度方向;、 在完全失重状态,平常一切由重力产生的物理现象完全消失。如单摆停摆、浸在水中的物体不受浮力等。牛顿定律的适用范围:(1) 只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2) 只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3) 只适用于宏观物体,一般不适用微观粒子。 牛顿运动定律的应用应用牛顿运动定律解题的一般步骤(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型.(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象.(3)分析研究对象的受力情况和运动情况.(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上.(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算.(6)求解方程,检验结果,必要时对结果进行讨论.3应用例析【例1】一斜面AB长为10m,倾角为30,一质量为2kg的小物体(大小不计)从斜面顶端A点由静止开始下滑,如图所示(g取10 m/s2)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B点时的速度及所用时间 【例2】如图所示,一高度为h=0.8m粗糙的水平面在B点处与一倾角为=30光滑的斜面BC连接,一小滑块从水平面上的A点以v0=3m/s的速度在粗糙的水平面上向右运动。运动到B点时小滑块恰能沿光滑斜面下滑。已知AB间的距离s=5m,求:(1)小滑块与水平面间的动摩擦因数;(2)小滑块从A点运动到地面所需的时间;【例3】静止在水平地面上的物体的质量为2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小。整体法与隔离法【例4】如图所示,A、B两木块的质量分别为mA、mB,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力FN。点评:这个结论还可以推广到水平面粗糙时(A、B与水平面间相同);也可以推广到沿斜面方向推A、B向上加速的问题,有趣的是,答案是完全一样的。【例5】如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的,即a=g,则小球在下滑的过程中,木箱对地面的压力为多少?解析典型问题问题1:必须弄清牛顿第二定律的矢量性。300aFNmgFf图1xyxaxayx牛顿第二定律F=ma是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。例1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?.另例: 如图所示,在箱内倾角为的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。求:箱以加速度a匀加速上升,箱以加速度a向左匀加速运动时,线对木块的拉力F1和斜面对箱的压力F2各多大?FF2F1a vGvaaxayF2F1GGxGyxy 问题2:必须弄清牛顿第二定律的瞬时性。L1L2图2(a)例2、如图2(a)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为,L2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。(l)下面是某同学对该题的一种解法:分析与解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡,有T1cosmg, T1sinT2, T2mgtan剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。因为mg tanma,所以加速度ag tan,方向在T2反方向。你认为这个结果正确吗?请对该解法作出评价并说明理由。L1L2图2(b)(2)若将图2(a)中的细线L1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l)完全相同,即 ag tan,你认为这个结果正确吗?请说明理由。问题3:必须弄清牛顿第二定律的独立性。Mm图3当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。那个方向的力就产生那个方向的加速度。例3、如图3所示,一个劈形物体M放在固定的斜面上,上表面水平,在水平面上放有光滑小球m,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是: ( )A沿斜面向下的直线 B抛物线 (m+M)gFF图5C竖直向下的直线 D.无规则的曲线。图4问题4:必须弄清牛顿第二定律的同体性。加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。aFFNMg图6例4、一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s2,求这时人对吊台的压力。(g=9.8m/s2)问题5:必须弄清面接触物体分离的条件及应用。相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。F图9例5、一弹簧秤的秤盘质量m1=15kg,盘内放一质量为m2=105kg的物体P,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图9所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初02s内F是变化的,在02s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2).问题6:必须会分析临界问题。图10例6、如图10,在光滑水平面上放着紧靠在一起的两物体,的质量是的2倍,受到向右的恒力B=2N,受到的水平力A=(9-2t)N,(t的单位是s)。从t0开始计时,则:A物体3s末时的加速度是初始时的511倍; Bts后,物体做匀加速直线运动;aAP450图11 Ct4.5s时,物体的速度为零; Dt4.5s后,的加速度方向相反。例8、如图11所示,细线的一端固定于倾角为450的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球。当滑块至少以加速度a= 向左运动时,小球对滑块的压力等于零,当滑块以a=2g的加速度向左运动时,线中拉力T= 。问题7:必须会分析与斜面体有关的问题。(系统牛顿第二定律)例12. 如图,倾角为的斜面与水平面间、斜面与质量为m的木块间的动摩擦因数均为,木块由静止开始沿斜面加速下滑时斜面始终保持静止。求水平面给斜面的摩擦力大小和方向。xyV0Mm图17例13、(难)如图17所示,水平粗糙的地面上放置一质量为M、倾角为的斜面体,斜面体表面也是粗糙的有一质量为m的小滑块以初速度V0由斜面底端滑上斜面上经过时间t到达某处速度为零,在小滑块上滑过程中斜面体保持不动。求此过程中水平地面对斜面体的摩擦力与支持力各为多大?图18SPQV问题9:必须会分析传送带有关的问题。例14、如图18所示,某工厂用水平传送带传送零件,设两轮子圆心的距离为S,传送带与零件间的动摩擦因数为,传送带的速度恒为V,在P点轻放一质量为m的零件,并使被传送到右边的Q处。设零件运动的后一段与传送带之间无滑动,则传送所需时间为 ,摩擦力对零件做功为 . A N a1 N f2 B a2 f1 mg mg 图19图20(a)(b)例15、(难)如图19所示,传送带与地面的倾角=37,从A到B的长度为16,传送带以V0=10m/s的速度逆时针转动。在传送带上端无初速的放一个质量为0.5的物体,它与传送带之间的动摩擦因数=0.5,求物体从A运动到B所需的时间是多少?(sin37=0.6,cos37=0.8) 机械能功和功率【例1】 质量为m的物体,受水平力F的作用,在粗糙的水平面上运动,下列说法中正确的是( ) 注意功是怎样改变能量的A如果物体做加速直线运动,F一定做正功B如果物体做减速直线运动,F一定做负功C如果物体做减速直线运动,F可能做正功D如果物体做匀速直线运动,F一定做正功 变力做功的计算 能定理 用平均值代替公式中的F。如果力随位移是均匀变化的,则平均值 F = FS图象中面积功 W = Pt【例2】用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升。如果前后两过程的运动时间相同,不计空气阻力,则( )A加速过程中拉力做的功比匀速过程中拉力做的功大B匀速过程中拉力做的功比加速过程中拉力做的功大C两过程中拉力做的功一样大D上述三种情况都有可能一对作用力和反作用力做功的特点(1)一对作用力和反作用力在同一段时间内,可以都做正功、或者都做负功,或者一个做正功、一个做负功,或者都不做功。(2)一对作用力和反作用力在同一段时间内做总功可能为正、可能为负、可能为零。(3)一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。拓展:作用力和反作用力在同一段时间内的冲量一定大小相等,方向相反,矢量和为零。区别保守力和非保守力做功的不同:与路径有无关系【例3】 质量为0.5kg的物体从高处自由下落,在下落的前2s内重力对物体做的功是多少?这2s内重力对物体做功的平均功率是多少?2s末,重力对物体做功的即时功率是多少?(g取)vafF汽车的两种加速问题恒定功率的加速恒定牵引力的加速。要注意两种加速运动过程的最大速度的区别。【例4】质量为m、额定功率为P的汽车在平直公路上行驶。若汽车行驶时所受阻力大小不变,并以额定功率行驶,汽车最大速度为v1,当汽车以速率v2(v2v1)行驶时,它的加速度是多少?【例5】质量是2000kg、额定功率为80kW的汽车,在平直公路上行驶中的最大速度为20m/s。若汽车从静止开始做匀加速直线运动,加速度大小为2m/s2,运动中的阻力不变。求:汽车所受阻力的大小。汽车做匀加速运动的时间。3s末汽车的瞬时功率。汽车在匀加速运动中牵引力所做的功。针对训练1一质量为m的木块静止在光滑的水平面上,从t=0开始,将一个大小为F的水平恒力作用在该木块上,在t=T时刻F的功率是( )A B C D2火车从车站开出作匀加速运动,若阻力与速率成正比,则( )A火车发动机的功率一定越来越大,牵引力也越来越大B火车发动机的功率恒定不变,牵引力也越来越小C当火车达到某一速率时,若要保持此速率作匀速运动,发动机的功率这时应减小D当火车达到某一速率时,若要保持此速率作匀速运动,则发动机的功率一定跟此时速率的平方成正比3同一恒力按同样方式施于物体上,使它分别沿着粗糙水平地面和光滑水平抛面移动相同一段距离时,恒力的功和平均功率分别为、和、,则二者的关系( )A、 B、C、 D、4如图甲所示,滑轮质量、摩擦均不计,质量为2kg的物体在F作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知( )A物体加速度大小为2 m/s2 BF的大小为21NC4s末F的功率大小为42W D4s内F做功的平均功率为42W 5物体静止在光滑水平面上,先对物体施一水平向右的恒力F1,经时间t后撤去F1,立即再对它施加一水平向左的恒力F2,又经时间t后物体回到原出发点,在这一过程中,F1、F2分别对物体做的功W1、W2之比为多少?6如图所示,在光滑的水平面上,物块在恒力F=100N作用下从A点运动到B点,不计滑轮的大小,不计绳、滑轮间摩擦,H=2.4m,=37,=53,求拉力F所做的功动能 势能 动能定理【例1】 一个质量为m的物体静止放在光滑水平面上,在互成60角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v,在力的方向上获得的速度分别为v1、v2,那么在这段时间内,其中一个力做的功为A B C D 错解:在分力F1的方向上,由动动能定理得,故A正确。正解:在合力F的方向上,由动动能定理得,某个分力的功为,故B正确。对外力做功与动能变化关系的理解:应用动能定理解题的步骤(1)确定研究对象和研究过程。和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。(2)对研究对象受力分析。(研究对象以外的物体施于研究对象的力都要分析,含重力)。(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)(4)写出物体的初、末动能。按照动能定理列式求解。 【例2】 将小球以初速度v0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。设空气阻力大小恒定,求小球落回抛出点时的速度大小v。【例3】如图所示,质量为m的钢珠从高出地面h处由静止自由下落,落到地面进入沙坑h/10停止,则(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h/8,则钢珠在h处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。【例4】 质量为M的木块放在水平台面上,台面比水平地面高出h=0.20m,木块离台的右端L=1.7m。质量为m=0.10M的子弹以v0=180m/s的速度水平射向木块,并以v=90m/s的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s=1.6m,求木块与台面间的动摩擦因数为。动能定理的综合应用1应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省徐州市鼓楼区2024-2025学年三年级数学第二学期期末调研模拟试题含解析
- 湖南文理学院芙蓉学院《误差理论与数据处理》2023-2024学年第二学期期末试卷
- 浙江省杭州市拱墅区公益中学2024-2025学年初三4月质量检测试题(四)数学试题含解析
- 山东省淄博市临淄区金山中学2024-2025学年下学期初三年级期中考试英语试题试卷含答案
- 山东省青岛第二中学2024-2025学年高考第三次质量调研物理试题试卷含解析
- 重庆外语外事学院《土木工程施工与管理软件应用》2023-2024学年第二学期期末试卷
- 山东省济南历下区2024-2025学年高中毕业班第一次综合质量检查数学试题含解析
- 昆明艺术职业学院《土地管理信息系统》2023-2024学年第二学期期末试卷
- 湛江市高一上学期期末调研考试语文试题
- 乳制品企业良好生产规范
- 2025中国新型储能行业发展白皮书
- 海南省天一大联考2024-2025学年高三学业水平诊断(四)语文试题及答案
- 社会认知力测试题及答案
- 肉鸡供需合同协议网页
- 旅游合同签署委托协议
- “条令条例学习月”主题授课课件
- 海洋生态环境监测技术-全面剖析
- 2024年中国资源循环集团有限公司招聘考试真题
- 《机械制图(多学时)》中职全套教学课件
- 骆驼祥子考点单选题100道及答案解析
- 新教科版小学1-6年级科学需做实验目录
评论
0/150
提交评论