


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实训设计 某企业分配甲、乙、丙、丁四个人去完成五项任务。经测算得每人完成各项任务时间如表3-13所示。由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每人完成一项。试确定总花费时间为最少的指派方案。 第三章 整数规划 一般整数规划问题 整数规划的解法 01规划 指派问题 物流资源分配问题 知识目标 掌握整数规划的基本形式; 掌握分枝定界法计算过程; 理解割平面法; 掌握01规划的标准形式; 了解01变量的应用; 掌握01规划的匈牙利解法。 技能目标 能够结合实际情况建立整数规划模型,并可利用分枝 定界法求解; 能够应用01规划建模并求解,安排人员工作。 第一节 一般整数规划问题 什么是整数规划问题? 整数规划的一般形式: 第二节 整数规划的解法 割平面法 分枝定界法 例3-5 割平面法 基本思想:求原问题对应松弛问题最优解,如果不是原问题的可行解,则通过引入线性约束条件(即割平面),使松弛问题的可行域逐步缩小(即切掉一部分),每次切割掉的是松弛问题的非整数解的一部分,但不切掉任何整数解,直到最后使目标函数达到最优的整数解成为可行域的一个顶点时,即为原问题的最优解。其本质是利用线性规划的求解方法逐步缩小可行域,最后找到整数规划的最优解。 例3-6 其最优解为=(1,1)最优值为=1 割平面法的求解步骤 步骤1:求解原问题的松弛问题,得最优解,若满足整数约束,则即为最优解,否则进入下一步; 步骤2:分解其中一个非整分量,构造一个新的线性约束条件,加入原松弛问题中,形成新的线性规划; 步骤3:求解新线性规划问题,得,若为整数则为原问题的最优解,否则进入步骤2。 按某非整分量构造的约束条件需满足以下两个条件: (1)当前最优解不满足该约束,即使得该最优解不会再出现在松弛问题可行解中; (2)所有整数可行解均满足该约束,即新增约束条件后,仍保留了原松弛问题的所有整数解。 分枝定界法 基本思想:求原问题的对应的松弛问题,其最优解若不是原问题的可行解,则通过附加线性不等式约束(整型),将松弛问题分枝变为若干子问题,即对每一个非整变量附加两个互相排斥(不交叉)的整型约束,即得两个子问题,继续求解定界,重复下去,直到得到最优解为止。 例3-7 用分枝定界法求解: 分枝定界法求解步骤 步骤1:求解原问题的松弛问题(用LP表示),得最优解,若满足整数约束,则即为最优解,否则进入下步。 步骤2:分枝。任选的一个不为整的分量,设为(其中为整数部分,为小数部分),据此得两个约束条件,这样就将LP的可行域分割成两个不相交的子集。将这两个约束分别加入LP得两个新问题,即两个分枝LP1和LP2。 步骤3:定界。设LP的最优值为,则它是IP最优值的上界,任取IP的一个可行解,对应目标值记为,它是的下界(初次下界可以取“”),即有: 分枝定界法求解步骤 步骤4:解每一分枝,并根据不同情况采取以下步骤: (1)若无可行解,则将该分枝剪掉,不再考虑。 (2)若是整数解且其最优值,则该分枝的解就是原整数规划问题的最优解,结束。 (3)若是整数解,但最优值,则取为新的下界,该枝关闭。 (4)若是非整数解且,则该分枝中不包含原问题的最优解,该枝关闭。 (5)若是非整数解,且又是平行各分枝中的最大目标函数值,则取为新的上界,同时将该枝视为新的LP,回到步骤2。 步骤5:各分枝均已查清,对应最优目标值的解即是原问题的最优解。 第三节 01规划 如果整数规划问题中的所有决策变量仅限于取0或者1两个值,则称此问题为01整数规划,简称01规划,其变量称为01变量。如果整数规划问题中的部分决策变量为01变量,则称为01混合整数规划。 01规划的求解 列举法 隐枚举法 隐枚举法 第四节 指派问题 指派问题的标准形式 价值系数 效率矩阵 决策变量 指派问题求解匈牙利法 推论:若将指派问题的效率矩阵每一行及每一列分别减去各行及各列的最小元素,则得到的新指派问题与原指派问题有相同的最优解。 定义:在效率矩阵C中,有一组在不同行不同列的零元素,称为独立零元素组,此时每个元素称为独立零元素。 定理1 设指派问题的效率矩阵为 ,若将该矩阵的某一行(或某一列)的各个元素都减去同一常数 ( 可正可负),得到新的效率矩阵 ,则以 为效率矩阵的新的指派问题与原指派问题的最优解相同。但其最优解比原最优值减少 。 每行减掉其所在行最小值,然后每列再减其所在列最小值 指派 指派方案 最优值为5665=22 例3-12 (1)对中所有不含元素的行打,如第3行。 (2)对打的行中,所有打零元素所在的列打,如第1列。 (3)对所有打列中元素所在行打,如第2行。 (4)重复上述(2)、(3)步,直到不能进一步打为止。 (5)对未打的每一行划一直线,如第1、3、5行。对已打的每一列划一纵线,如第1列,既得到覆盖当前0元素的最少直线数。 在未被直线覆盖过的元素中找最小元素,将打行的各元素减去这个最小元素,将打列的各元素加上这个最小元素(以避免打行中出现负元素),这样就增加了零元素的个数。 最优指派方案是:让小组1完成任务3;小组2完成任务2;小组3完成任务1;小组4完成任务4;小组5完成任务5 总成本 79666=34 非标准形式的指派问题 最大化指派问题 人数和工作数不等 某事一定不能由某人来做 一个人可做几件事 第五节 物流资源分配问题 本章小结 本章在线性规划的基础上,结合物流问题实际,提出了决策变量部分或者全部限制为整数时的一般线性整数规划问题,通过与相应的线性规划进行比较,说明了整数规划问题需要探求新的求解方法,接着重点阐述了求解整数规划问题的两类基本方法:割平面法与分枝定界法。作为整数规划的特例,专门讨论了决策变量仅取0、1两个值时相应整数规划及其求解方法。最后介绍了整数规划在物流资源分配中的应用。 本章重点和难点是求解一般整数规划的分枝定界
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安邮电大学《美术鉴赏与批评》2023-2024学年第二学期期末试卷
- 浙江理工大学《木材工业自动化》2023-2024学年第二学期期末试卷
- 南昌大学共青学院《免疫学与病原生物学》2023-2024学年第二学期期末试卷
- 抚顺师范高等专科学校《品牌形象专项设计一》2023-2024学年第二学期期末试卷
- 证券从业资格证券投资顾问胜任能力考试证券投资顾问业务真题1
- 山东劳动职业技术学院《智能车辆环境感知技术》2023-2024学年第二学期期末试卷
- 2025辽宁省安全员B证(项目经理)考试题库
- 湖南冶金职业技术学院《企业生产与技术管理》2023-2024学年第二学期期末试卷
- 2025年陕西省建筑安全员-B证(项目经理)考试题库
- 湖南电气职业技术学院《面向数据科学的语言》2023-2024学年第二学期期末试卷
- 关于新能源场站“两个细则”的影响和管理措施
- 手术部位感染预防控制措施
- 社会学概论课件
- 中医类诊所规章制度与岗位职责
- 初中语文 中考总复习-文言文断句训练120题(含答案解析)
- 影视鉴赏-动画电影课件
- 美学原理全套教学课件
- 精装修施工图深化内容及要求
- 《克雷洛夫寓言》阅读指导课件
- 《无人机载荷与行业应用》 课件全套 第1-6章 无人机任务载荷系统概述- 未来展望与挑战
- 《室内照明设计》(熊杰)794-5 教案 第7节 绿色照明、节能照明与应急照明
评论
0/150
提交评论