对因瓦效应的认识.doc_第1页
对因瓦效应的认识.doc_第2页
对因瓦效应的认识.doc_第3页
对因瓦效应的认识.doc_第4页
对因瓦效应的认识.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对因瓦效应的认识理学院 董俊华 学号201010802004一、关于因瓦效应因瓦效应(InvarEffect)一般指一些磁性体在磁性相变温度即居里点Tc以下,其热膨胀索数趋近为零的现象.1896年法国物理学家C.E.Guialme发现了一种奇妙的合金1,这种合金在磁性温度即居里点附近热膨胀系数显著减少,出现所谓反常热膨胀现象(负反常),从而可以在室温附近很宽的温度范围内,获得很小的甚至接近零的膨胀系数,这种合金的组成是64%的Fe和36%的Ni,呈面心里方结构,其牌号为4J36,它的中文名字叫殷钢,英文名字叫因瓦合金(invar),意思是体积不变。这个卓越的合金对科学进步的贡献如此之大,致使其发现者法国人C.E.Guilaume为此获得1920年的诺贝尔奖,在历史上他是第一位也是唯一的科学家因一项冶金学成果而获此殊荣。 因瓦合金自从十九世纪被发现以来,人们就被它的巨大的工业应用潜力和所蕴含的丰富的物理内容所吸引,因瓦效应的研究不仅是阐明金属及其合金、化合物磁性起源的重要途径,而且在精密仪器仪表、微波通讯、石油运输容器以及高科技产品等领域有广泛的实际作用,因而因瓦合金是许多冶金材料学家力于开拓的新材料领域,其机理也是凝聚态物理学家尚待解决的难题。一般来说,绝大多数金属和合金都是在受热时体积膨胀,冷却时体积收缩,它们的热膨胀系数呈线性增大,但是元素周期表中的铁、镍、钴等过渡族元素组成的某些合金,由于它们的铁磁性,在一定的温度范围内,热膨胀不符合正常的膨胀规律,具有因瓦效应的反常热膨胀。例如,4J36因瓦合金在居里点以上的热膨胀与一般合金相似,但在居里点以下形成反常热膨胀,为了搞清因瓦合金的机理,科学家们作了大量的实验,试验表明,它的机理与化学成分及磁性有关,它在一定范围的线膨胀系数是由低膨胀和高膨胀两部分组成,含镍量在一定范围内的增减会引起铁、镍合金线膨胀系数的急剧变化。当含有32%-36%的镍合金具有很低的线膨胀系数,一般平均膨胀系数为=1.510-6 oC,当含Ni量达到36%时,因瓦合金热膨胀系数最低,达到a=1.8 10-6 oC,从而可获得低到接近零值甚至负值的热膨胀系数。该合金在居里温度以上(230oC),失去了磁性,膨胀系数变大,而在居里点Tc附近热胀系数比正常的系数小,出现所谓的“负反常”现象。为什么因瓦合金会随化学成分及磁性的变化会出现“负反常”的热膨胀系数?科学家根据试验结果,在理论方面对其进行了广泛的研究,研究表明因瓦效应主要是在具有面心里方的-Fe中出现,在相和相的相界,当相为零时就出现因瓦效应,象这样关于只在-Fe系合金中出现因瓦效应的原因,目前有各种解释,但是大多数人认为,有两种:(1)在fcc合金中,Fe具有高自旋和低自旋两种不同的能态,高自旋态使铁磁性稳定并使合金的体积膨胀。这样从居里温度以上的温度区逐渐降低过程中Fe从低自旋向高自旋能态过渡,使合金体积逐渐膨胀。但是,随着温度的降低,晶格振动减弱,合金体积也同时缩小,这个效应与Fe的磁性膨胀之间发生竟争,结果使实际体积变化减小,产生正的自发体积磁致伸缩,使因瓦合金在居里点附近出现所谓的“负反常”。(2)invar合金的费米能级位于d能带低能态密度附近,从而在铁磁性极化的同时,电子动能的增长比普通合金大得多,能带宽度减小(能态密度提高),使之力图减少动能的增长,而能带宽度的减小相当于晶格膨胀,即磁性膨胀,其结果和上述(1)一样,由于晶格膨胀与晶格振动相竞争,于是出现低膨胀特性。考察以上两种见解,可以发现,invar效应是由Fcc立方Fe基合金的铁磁性的能态所具有的一种特性引起的,这是上述两种解释都包含的共同概念。根据这个概念,可以设计其它因瓦合金。二、关于因瓦效应研究在历史纵观近百年因瓦效应的研究历史,大体上可分三个阶段:第一阶段:自因瓦效应的发现至1956年.在此阶段,冶金材料学家和物理学家一起从结构相变和唯象理论进行了因瓦效应起源的研究。第二阶段:自1957年到1977年。1957年,苏联Kondorsky提出在因瓦合金中存在潜在反铁磁性相的理论模型,从此因瓦效应研究才进入近代物理学的研究轨道,但仍处于只从静态物理特性角度研究因瓦效应的阶段。第三阶段:自1978年至今。1978年,IshikawaY用非弹性中子散射研究了晶态因瓦合金的自旋波动力学特征;1979年,EndohY用非弹性中子散射研究了晶态因瓦合金晶格动力学特性,从而开创了从动力学高度研究因瓦效应的新阶段。三、因瓦效应与磁性理论自60年代以来,由于磁性理论有了很大的发展,因瓦效应研究也有了很大发展,特别是因瓦效应理论研究更加活跃,相继提出许多理论模型,出现模型林立、争论不休的局面。在局域电子模型(或称局域磁矩模型)基础上,KOndorsty提出“潜在”反铁磁性理论模型,Weiss提出两种“自旋态”理论模型,能够直观地说明一些fccFe一Ni合金的因瓦效应特征。在巡游电子模型Stoner能带论基础上,Katsuki、kanamoriJ、Wohlfarth等人分别提出因瓦效应理论,解释了巡游电子态因瓦合金和弱铁磁性因瓦合金的诸反常特性。反之,因瓦效应的研究也促进了磁性理论的发展.例如,MoriyaT等人提出的弱铁磁性自旋涨落的SCR理论证明,弱铁磁体应该TcM2 (T)=3/5Ms(o).IshikawaY在弱铁磁合金Mnsi,用其磁体积反常效应(即因瓦效应)定量地证实Ms2(T)在Tc确为3/5Ms(0),从而该理论才得到磁学界的公认.显而易见,在因瓦效应领域,因瓦理论与磁性理论是相辅相成,有时是相一致的。四、因瓦合金的发展及应用前景自从因瓦合金的发现,引起了世界各国科学家的重视和研究,使得因瓦合金无论是从种类还是从性能和应用上都得到了极大的提高。如1927年日本增本量首先研制出FeNiCo和FeNiCr因瓦合金,1937年德国A.Kussmann研制出FePt和FePd因瓦合金等;我国在五、六十年代也研制出4J32和4J36因瓦合金;经过将70年的发展,直到20世纪70年代,美国Inco公司研制出Incoloy903合金,才使低膨胀合金进入了高温用途领域,到80年代末期,才形成了现代低膨胀超合金系列。作为低膨胀合金都要求组织稳定性,一般要求在6070下不发生马氏体相变。因为一发生这种相变,合金的膨胀系数会发生突变,导致应用出现故障,这是不允许的。可贵的是,FeNi36因瓦合金和FeNi32Co4超因瓦合金,在-273下也能保持组织稳定性,因而至今广泛应用的只有因瓦合金和超因瓦合金,近几年来在改进它们的质量,扩大使用范围,科学家们做了大量的研究工作,经过100多年的发展,因瓦合金仍然是被广泛应用的经久不衰的优质材料。在因瓦合金问世的一百多年以来,取其低膨胀系数低这一特征的应用领域迅速扩大,用因瓦合金制造的精密仪器仪表、标准钟的摆杆、摆轮及钟表的游丝成为早期最重要的产品,在上世纪20年代用因瓦合金代替铂用作于玻璃封接的引丝,大大的降低了成本;到了五、六十年代,因瓦合金的用途继续扩大,主要用于无线电电子管、恒温器中作控温用的热双金属片、长度标尺、大地测量基线尺等;到了八九十年代,广泛用于微波技术、液态气体储容器、彩电的阴罩钢带、架空输电线芯材、湝振腔、激光准直仪腔体、三步重复光刻相机基板等。进入21世纪之后,随着航天技术的飞速发展,新的应用还包括用在航天遥感器、精密激光、光学测量系统和波导管中作结构件、显微镜、天文望远镜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论