




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次函数基本题型过关卷题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_,b=_;若A,B关于y轴对称,则a=_,b=_;若若A,B关于原点对称,则a=_,b=_;2、 若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_象限。题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示; 任意两点的距离为; 若ABx轴,则的距离为; 若ABy轴,则的距离为; 点到原点之间的距离为1、 点D(a,b)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;2、 已知点P(3,0),Q(-2,0),则PQ=_,两点(3,-4)、(5,a)间的距离是2,则a的值为_;3、 已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且ACB=90,则C点坐标为_.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。A与B成正比例A=kB(k0)1、当m_时,是一次函数;2、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为_;题型四、函数图像及其性质方法:一次函数y=kx+b(k0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k0) 的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与y轴交点的 ,也表示直线在y轴上的 。 同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y轴上同一点。 特殊直线方程: X轴 : 直线 Y轴 : 直线 与X轴平行的直线 与Y轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y5x+6,y的值随x值的减小而_。2、对于函数, y的值随x值的_而增大。 3、一次函数 y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。4、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_象限。5、已知一次函数 (1)当m取何值时,y随x的增大而减小? (2)当m取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k0)的解析式。 已知是直线或一次函数可以设y=kx+b(k0); 若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、若一次函数y=kx+b的自变量x的取值范围是-2x6,相应的函数值的范围是-11y9,求此函数的解析式。6、已知直线y=kx+b与直线y= -3x+7分别关于x、y、z轴对称,求k、b的值。题型六、平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3 y=k(x+2)+b+3;(“左加右减,上加下减”)。1. 直线向下平移2个单位,再向左平移1个单位得到直线_。2. 过点(2,-3)且平行于直线y=-3x+1的直线是_.3直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=_;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。2、 已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1) 求两个函数的解析式;(2)求AOB的面积;3、 已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;(1) 分别写出两条直线解析式,并画草图;(2) 计算四边形ABCD的面积;(3) 若直线AB与DC交于点E,求BCE的面积。4、 如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,AOP的面积为6;(1) 求COP的面积;(2) 求点A的坐标及p的值;(3) 若BOP与DOP的面积相等,求直线BD的函数解析式。5、已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D (1)求直线的解析式; (2)若直线与交于点P,求的值。6. 如图,已知点A(2,4),B(-2,2),C(4,0),求ABC的面积。解析题题型分类1方案设计问题 物资调运 例1.(2008年重庆第27题)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。 (1)求这批赈灾物资运往D、E两县的数量各是多少? (2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案; (3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表: A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少? 解析:本题题干文字长,数量关系复杂,但只要弄懂了题意,并结合表格将数量关系进行整理,解决起来并不难。 直接用一元一次方程求解。运往D县的数量比运往E县的数量的2倍少20吨,设运往E县m吨,则运往D县(2m-20)吨,则m+(2m-20)=280,m=100,2m-20=180。(亦可用二元一次方程组求解) 由中结论,并结合题设条件,由A地运往D的赈灾物资为x吨,可将相应数量关系列表如下: A地(100吨)B(100吨)C(80吨)D县(180吨)x(220元/吨)180-60-x =120-x(200元/吨)60(200元/吨)E县(100吨)100-x(250/吨元)100-20-(100-x) =x-20(220元/吨)20(210元/吨)表格说明:A、B、C、D、E各地后括号中的数字为调运量或需求量; 表格中含x的式子或数字,表示对应地点调运数量; 表格中其他括号中的数字,表示对应的调运费用。 确定调运方案,需看问题中的限制条件:B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。B地运往E县的赈灾物资数量不超过25吨。故: 解得 40x45 x为整数 x的取值为41,42,43,44,45 则这批救灾物资的运送方案有五种。 方案一:A县救灾物资运往D县41吨,运往E县59吨; B县救灾物资运往D县79吨,运往E县21吨。 (其余方案略) 设运送这批赈灾物资的总费用为y,由中表格可知: y=220x+250(100-x)+200(120-x)+220(x-20)+20060+21020 =-10x+60800 y随x增大而减小,且40x45,x为整数, 当x=41时,y有最大值。 该公司承担运送这批赈灾物资的总费用最多是:y=-1041+60800=60390(元) 求解物资调运问题的一般策略: 用表格设置未知数,同时在表格中标记相关数量; 根据表格中量的关系写函数式; 依题意正确确定自变量的取值范围(一般通过不等式、不等式组确定); 根据函数式及自变量的取值范围,结合一次函数的性质,按题设要求确定调运方案。 物资调运问题应用广泛,包括调水、调运物资、分配物资等多种类型。 方案比较 例2.(2008年盐城)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元)。现有两种购买方案: 方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元;(总费用=广告赞助费+门票费) 方案二:购买方式如图2所示。解答下列问题: 方案一中,y与x的函数关系式为 ;方案二中,当0x100时,y与x的函数关系式为 ,当x100时,y与x的函数关系式为 。 如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由。 甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张? 解析:这是一个两种方案的比较问题。方案比较通常与不等式联系紧密。比较优惠条件,即通过比较函数值的大小,确定自变量的区间。 中方案一的函数关系式,直接依题意写出:y1=60x+10000(x0);方案二的函数关系由图象给出,用待定系数法求解。当0x100时,图象为过原点的线段,函数式为正比例函数,可求得y2=100x(0x100);当x100时,图象为不过原点的射线,函数式为一次函数,过(100,10000),(150,14000),可求得y2=80x+2000(x100)。 购买门票超过100张,比较那种方案最省,了先使y1=y2,求出此时x的值。然后利用不等式确定方案。 当y1=y2时,60x+10000=80x+2000,解得x=400,即购买400张门票,两种方案费用相同。 当y1y2时,解得x400,则当100x400时,选择方案二,总费用最省; 当y1y2时,解得x400,则当x400时,选择方案一,总费用最省。 分两种情况讨论:(用方程求解) 甲单位按方案购买的门票少于100张时,设甲买m(m100)张,则乙买700-m张。 100m+60(700-m)+10000=58000 解得m=150(不合题意,舍去) 甲单位按方案购买的门票少于100张时,设甲买m(m100)张,则乙买700-m张 80m+2000+60(700-m)+10000=58000 解得m=200,700-m=500 求解方案比较问题的一般策略: 在方案比较问题中,不同的方案有不同的函数式。因此首先需设法求出不同方案各自的函数式。求函数式时,有图象的,多用待定系数法求;没有给出图象的,直接依题意进行列式。 方案比较问题通常都与不等式、方程相联系。比较方案,即比较同一自变量所对应的函数值。要会将函数问题转化为方程、不等式问题。 方案比较中尤其要注意不同的区间,多对应的大小关系不同。 方案比较问题,在门票、购物、收费、设计等问题中都可涉及。 2.2分段函数问题 分段价格 例3.(2008年襄樊第23题)我国是世界上严重缺水的国家之一为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(ba)收费设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示 (1)求的值;某户居民上月用水8吨,应收水费多少元? (2)求的值,并写出当x10时,与之间的函数关系式; (3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨? 解析:(1)当时,有将,代入,得 用8吨水应收水费(元) (2)当x10时,有 将,代入, 得 故当x10时, (3)因, 所以甲、乙两家上月用水均超过10吨 设甲、乙两家上月用水分别为吨,吨, 则 解之,得 故居民甲上月用水16吨,居民乙上月用水12吨 解分段价格问题的一般策略: 分段函数的特征是:不同的自变量区间所对应的函数式不同,其函数图象是一个折线。解决分段函数问题,关键是要与所在的区间相对应。 分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上。在求解析式要用好“折点”坐标,同时在分析图象时还要注意“折点”表示的实际意义,“折点”的纵坐标通常是不同区间的最值。 分段函数应用广泛,在收费问题、行程问题及几何动态问题中都有应用。 几何图形中的动点 例4.(2008年长沙第25题)在平面直角坐标系中,一动点P(,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图)按一定方向运动。图是P点运动的路程s(个单位)与运动时间(秒)之间的函数图象,图是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分. (图) (图) (图) (1)s与之间的函数关系式是: ; (2)与图相对应的P点的运动路径是: ;P点出发 秒首次到达点B; (3)写出当3s8时,y与s之间的函数关系式,并在图中补全函数图象. 解析:(1)由图象可知为正比例函数。S=(t0) (2)由图象,M纵坐标为0变为1,则路径为:MDAN, 10秒 (3)当3s5,即P从A到B时,y=4-s; 当5s7,即P从B到C时,y=-1; 当7s8,即P从C到M时,y=s-8(补全图象略) 求解几何图形中的动点问题一般策略: 解决几何图形中的动态问题,关键是看动点运动的路径,在不同的路径上,所对应的线段长(高)等不同,由此引起其它变量的变化。因此根据不同路径以确定自变量的变化区间至关重要。 在不同的区间上求函数表达式,应注意紧密结合几何图形的特征,会将将函数中的变量关系转化为几何图形上的对应线段关系。 动点(动线)问题,引起图形中相关量的变化,多以面积为主。本题给出的坐标变化相对降低了难度。但给出的图象较多,涉及到路程与时间、路程与坐标三个变量,共两种函数,在解决问题时,应认真审题。 2.3 数形结合由“形”求式 单个函数图象 例5.(2008年南京)28(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系 根据图象进行以下探究: 信息读取 (1)甲、乙两地之间的距离为 km; (2)请解释图中点的实际意义; 图象理解 (3)求慢车和快车的速度; (4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围; 问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇求第二列快车比第一列快车晚出发多少小时? 解析:(1)900; (2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇 (3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为; 当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h (4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,此时两车之间的距离为,所以点的坐标为 设线段所表示的与之间的函数关系式为,把,代入得 解得 所以,线段所表示的与之间的函数关系式为 自变量的取值范围是 (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h 把代入,得 此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚出发0.75h 单个函数图象求“式”的一般策略: 单个函数图象,尤其是折线图,在读图过程中一定要正确认识和理解图形上点的坐标的实际意义。 要关注“折点”所表示的意义,用好折点坐标。 用图象求函数式,多用待定系数法,因此要善于寻找图象上点的坐标。一方面可以从图象上寻找,此外还可以结合题设中的条件寻找。 多个函数图象 例62008年5月12日14时28分四川汶川发生里氏8.0级强力地震。某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区。乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时)。图中的折线、线段分别表示甲、乙两组所走路程(千米)、(千米)与时间x(小时)之间的函数关系对应的图像。请根据图像所提供的信息,解决下列问 (1)由于汽车发生故障,甲组在途中停留了_小时;(2分) (2)甲组的汽车排除故障后,立即提速赶往灾区。请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分) (3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不过25千米。请通过计算说明,按图像所表示的走法是否符合约定。 解析:本题由甲乙两个互相关联但又不同的行程问题构成,函数图象之间彼此相交。要解决好所求问题,必须深入认识和理解图象中的信息,尤其是已知点坐标的实际意义。 (1)由图象可知:AB段发生故障。时间为4.9-3=1.9(小时) (2)要求甲组的汽车在排除故障时,距出发点的路程是多少千米。即要求出B点的纵坐标。点B在线段BD上,且横坐标为4.9。只需求出BD所在直线的解析式即可。C是BD、EF交点,C点的横坐标为6,求出直线EF的解析式,则可得到C点坐标。从而求出BD解析式,得到B点纵坐标。 设直线EF的解析式为乙=kx+b点E(1.25,0)、点F(7.25,480)均在直线EF上 解得 直线EF的解析式是y乙=80X-100 点C在直线EF上,且点C的横坐标为6, 点C的纵坐标为806100=380 点C的坐标是(6,380) 设直线BD的解析式为y甲= mx+n 点C(6,380)、点D(7,480)在直线BD上 解得 BD的解析式是y甲=100X -220 B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270) 甲组在排除故障时,距出发点的路程是270千米。 (3)符合约定 由图像可知:甲、乙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论