




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省中考压轴一般考查将二次函数、方程、三角形和四边形的知识结合在一起,突出了待定系数法、数形结合思想、方程思想、函数建模思想、分类讨论思想、符号思想等重要的数学思想方法。在复习时一定重视,这类题目都有统一的解题规律与方法,同时让学生在做题时多积累经验,提高分析能力,尝试多种方法,吃透函数图像与性质,化动为静、化难为易,逐一各项击破。(2009年)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1个单位长度,运动时间为t秒.过点P作PEAB交AC于点E 过点E作EFAD于点F,交抛物线于点G.当t为何值时,线段EG最长?连接EQ在点P、Q运动的过程中,判断有几个时刻使得CEQ是等腰三角形?请直接写出相应的t值. (2010年)23(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标(2011年)23. (11分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E.设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.中考压轴综合题的分类第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形存在性问题1.2因动点产生的等腰三角形存在性问题1.3因动点产生的直角三角形存在性问题1.4因动点产生的特殊四边形问题(平行四边形、菱形、正方形存在性)1.5因动点产生的梯形存在性问题(直角梯形与等腰梯形存在性)1.6因动点产生的全等问题1.7因动点产生的面积问题1.8因动点产生的线段和差问题(含几何最小值或周长最小值)第二部分 图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题2.2由面积公式产生的函数关系问题第三部分 图形运动中的计算说理问题3.1代数计算及通过代数计算进行说理问题3.2几何证明及通过几何计算进行说理问题第四部分 图形的平移、翻折与旋转4.1 图形的平移4.2 图形的翻折4.3 图形的旋转1.1因动点产生的相似三角形问题C1 2010年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示x2x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由 图1 图C2 2011年上海市闸北区中考模拟第25题直线分别交x轴、y轴于A、B两点,AOB绕点O按逆时针方向旋转90后得到COD,抛物线yax2bxc经过A、C、D三点(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由图11.2因动点产生的等腰三角形问题C3 2011年湖州市中考第24题如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D(1)求点D的坐标(用含m的代数式表示);(2)当APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2)当点P从O向C运动时,点H也随之运动请直接写出点H所经过的路长(不必写解答过程)图1 图2C4 (10重庆潼南)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.1.3因动点产生的直角三角形问题C5 (2010甘肃)(12分) 如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由1.4因动点产生的平行四边形问题C6 2010年河南省中考第23题在平面直角坐标系中,已知抛物线经过A(4,0)、B(0,4)、C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标 图1 图2C7例6、平面直角坐标系中,已知抛物线经过A,B,C三点(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标1.5因动点产生的梯形问题C8 2011年义乌市中考第24题已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x4,设顶点为点P,与x轴的另一交点为点B(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN/x轴,交PB于点N 将PMN沿直线MN对折,得到P1MN 在动点M的运动过程中,设P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式 图1 图21.6因动点产生的全等问题23. (11分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E.设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.1.7因动点产生的面积问题C9 2011年上海市闵行区中考模拟第24题如图1,已知:抛物线yx2bx3与x轴相交于A、B两点,与y轴相交于点C,并且OA = OC(1)求这条抛物线的解析式;(2)过点C作CE / x轴,交抛物线于点E,设抛物线的顶点为点D,试判断CDE的形状,并说明理由;(3)设点M在抛物线的对称轴l上,且MCD的面积等于CDE的面积,请写出点M的坐标(无需写出解题步骤) C10 2011年上海市松江区中考模拟第24题如图1,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A、C分别在x轴、y轴的正半轴上,CBOA,OC4,BC3,OA5,点D在边OC上,CD3,过点D作DB的垂线DE,交x轴于点E (1)求点E的坐标;(2)二次函数yx2bxc的图像经过点B和点E求二次函数的解析式和它的对称轴;如果点M在它的对称轴上且位于x轴上方,满足SCEM2SABM,求点M的坐标1.8因动点产生的线段和差问题C11 2011年福州市中考第22题已知,如图1,二次函数yax22ax3a(a0)的图像的顶点为H,与x轴交于A、B两点(B在A的右侧),点H、B关于直线l:对称(1)求A、B两点的坐标,并证明点A在直线l上;(2)求二次函数的解析式;(3)过点B作BK/AH交直线l于点K,M、N分别为直线AH和直线l上的两个动点,联结HN、NM、MK,求HNNMMK和的最小值 C12 2011年嘉兴市中考第24题已知直线ykx3 (k0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒(1)当k1时,线段OA上另有一动点Q由A向O运动,它与点P以相同速度同时出发,当P到达点A时两点同时停止运动(如图1)直接写出t1秒时C、Q两点的坐标;若以Q、C、A为顶点的三角形与AOB相似,求t的值(2)当时,设以C为顶点的抛物线y(xm)2n与直线AB的另一个交点为D(如图2) 求CD的长;设COD的OC边上的高为h,当t为何值时,h的值最大?图1 图22.1 由比例线段产生的函数关系问题C13 2008年上海市卢湾区中考模拟第24题如图1,已知点是轴上一点,过点作轴的垂线,垂足为点,点是上一动点(不与、重合),连结、,过点作,交于点,过点作,交于点.(1)设点的纵坐标为,求关于的函数关系式,并写出的取值范围.(2)若存在一点,使四边形是矩形,求的值 2.2由面积公式产生的函数关系问题C14 2011年乐山市中考数学试题第26题.已知顶点为A(1,5)的抛物线经过点B(5,1).(1)求抛物线的解析式; (2)如图(1),设C,D分别是轴、轴上的两个动点,求四边形ABCD周长的最小值;(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P()()是直线上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PRQ.当PBR与直线CD有公共点时,求的取值范围;在的条件下,记PBR与COD的公共部分的面积为S.求S关于的函数关系式,并求S的最大值。C15 2010年嘉兴市中考数学试题第24题如图,已知抛物线交x轴的正半轴于点A,交y轴于点B(1)求A、B两点的坐标,并求直线AB的解析式;(2)设()是直线上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值(第24题)3.1代数计算及通过代数计算进行说理问题C16如图,在直角坐标系,O为原点,一次函数的图像分别与x轴y轴交与A,B两点,是等边三角形。(1) 求A,B,C的坐标。(2) 已知二次函数的图像经过A,B,C三点,求这个二次函数的解析式。(3) 将(2)所得的二次函数的图像向下平移,使得平移后的函数图像经过原点,其顶点为P,求四边形ABOP的面积 C17 2008年江西省南昌市数学中考试卷 24题 如图,抛物线相交于两点(1)求值;(2)设与轴分别交于两点(点在点的左边),与轴分别交于两点(点在点的左边),观察四点的坐标,写出一条正确的结论,并通过计算说明;(3)设两点的横坐标分别记为,若在轴上有一动点,且,过作一条垂直于轴的直线,与两条抛物线分别交于C,D两点,试问当为何值时,线段CD有最大值?其最大值为多少?yxPAOBB 3.2几何证明及通过几何计算进行说理问题C18 黄浦区2009年初三学业考试模拟考 24题如图,二次函数的图像经过点,且与轴交于点. (1)试求此二次函数的解析式; (2)试证明:(其中是原点); (3)若是线段上的一个动点(不与、重合),过作轴的平行线,分别交此二次函数图像及轴于、两点,试问:是否存在这样的点,使?若存在,请求出点的坐标;若不存在,请说明理由.4.1 图形的平移 C19 2009年台州市中考数学试题 24题如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(第24题)(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积 C20 2009年舟山市中考数学试题 24题24. (本题12分)如图,已知点A(-4,8)和点B(2,n)在抛物线上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(-4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB 最短,求此时抛物线的函数解析式;当抛物线向左或向右平移时,是否存在某个位置,使四边形ABCD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由(第24题)4x22A8-2O-2-4y6BCD-444.2图形的翻折 C21 2011年石景山区初三一模数学试题 25题 已知二次函数的图象与轴交于点(,0)、点,与轴交于点(1)求点坐标;(2)点从点出发以每秒1个单位的速度沿线段向点运动,到达点后停止运动,过点作交于点,将四边形沿翻 折,得到四边形,设点的运动时间为当为何值时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 含连带责任保证人借款合同
- 企业外包服务合同样本
- 糖尿病教学教案
- 辐射台使用过程中突发意外情况的应急预案及流程
- 供热公司清运合同样本
- 悬浮式拼装运动地板施工方案
- 除数是两位数的除法教案
- 初中物理教学经验介绍
- 中日双语外贸合同样本
- 中山办公家具购销合同标准文本
- 2025年四川省成都市青白江区招聘50人历年高频重点提升(共500题)附带答案详解
- 2025年浙江嘉兴市众业供电服务限公司招聘38人高频重点提升(共500题)附带答案详解
- 【课件】第12课+理想与典范-古希腊与古罗马美术+课件高中美术人教版(2019)美术鉴赏
- 建筑行业安全隐患举报奖励机制
- 公司事故隐患内部报告奖励机制
- Unit10 How to stay safe 教学设计-2023-2024学年教科版(广州)英语五年下册
- 家禽委托屠宰合同协议书
- 小学生诗词大赛练习资料
- 铝板幕墙监理细则
- 全过程工程咨询管理服务方案投标方案(技术方案)
- 光储电站储能系统调试方案
评论
0/150
提交评论