§1.2解三角形应用举例第四课时导学案.doc_第1页
§1.2解三角形应用举例第四课时导学案.doc_第2页
§1.2解三角形应用举例第四课时导学案.doc_第3页
§1.2解三角形应用举例第四课时导学案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

肥西农兴中学2011级高一数学导学案 必修五 第三章 高一年级备课组 谢守奎学习 1.2 解三角形应用举例第四课时:正、余弦定理在三角形中的应用 学习目标1、 知识目标:熟记正、余弦定理;掌握正、余弦定理的应用2、 技能目标: 能根据边角关系等式判定三角形形状 在三角形中会证明一些三角恒等式 正、余弦定理在三角形中的综合应用能力学习重点能根据条件等式判定三角形形状;在三角形中会证明一些三角恒等式学习难点边角关系的转化能力;化简计算能力学习过程一、课前准备(一)、基本知识:1.常用的定理或公式主要有以下几个: 在ABC中,A + B + C = , , sin(A+B/2)=cos(C/2), 2.等腰三角形或A=B直角三角形或钝角三角形或 锐角三角形若为最大边且或A为最大角且(二)、方法提升:1.通过前面的学习,在边角关系等式的化简与证明中常采用的 两种方法是 ; 2.通过前面的学习,在解三角形问题时,经常需要应用三角形 中那些定理 3.通过前面的学习,在解三角形中,常应用到必修4中哪些 三角公式 4.已知两边及其一边对角解三角形时,解的结果有 ,你常用什么方法来进行 判定,说说你采用的方法 二、新课导学【探究1】根据边角关系判定三角形形状(导学:判断三角形的形状,就是利用正、余弦定理等进行代换、转化,寻求边与边或角与角之间的数量关系,从而作出正确判断边与边的关系主要看是否有等边,是否符合勾股定理等;角与角的关系主要是看是否有等角,有无直角、钝角和锐角等)1.已知ABC中,bsinB=csinC,且,试判断三角形的形状2.在ABC中,若=,b=a+c,试判断ABC的形状.3.在ABC中,已知,试判断ABC的形状【探究2】利用正、余弦定理证明边角关系恒等式【探究3】正余弦定理其它综合应用1.如图,某住宅小区的平面图呈扇形AOC小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路,且拐弯处的转角为已知某人从沿走到用了10分钟,从沿走到用了6分钟若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米)学习小结 课后提升【必做题】1.在 中,已知, 试判断ABC的形状2在中,已知cos2,试判断此三角形的类型.3.求证:在ABC中,a=b+c,b=c+a,c=a+b。4.在ABC中,角A、B、C的对边分别为a、b、c,求证:.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论