稀土材料-3应用.doc_第1页
稀土材料-3应用.doc_第2页
稀土材料-3应用.doc_第3页
稀土材料-3应用.doc_第4页
稀土材料-3应用.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三课 稀土材料的主要应用1.1 稀土在冶金工业中的应用 1.2 稀土在高温超导材料中的应用 1.3 稀土在航空工业中的应用现状与发展趋势 1.4 稀土在轻工、纺织和建材工业中的应用 1.5 稀土在医疗领域中的应用研究现状 1.6 稀土在催化剂中的应用 1.1 稀土在冶金工业中的应用 稀土在冶金领域应用已有30多年的历史,目前已形成了较为成熟的技术与工艺,稀土在钢铁、有色金属中的应用,是一个量大面广的领域,有广阔的前景,对国民经济建设具有重要意义。 一、稀土在钢中的应用 稀土在钢中的应用有近30年的历史,经过对稀土金属在钢中作用规律和机理的研究,搞清楚了稀土在钢中的作用;通过添加工艺方法的实验研究,掌握了稀土加入的工艺条件、添加稀土金属的品种和加入量。至八十年代末期,稀土在钢中的应用已没有技术方面的障碍。我国稀土钢产量从1985年的11万吨增长到1997年的近60万吨,品种80多个。仅武钢一家,“八五”期间就生产了160万吨稀土钢,创造经济效益3.2亿元,社会效益18.3亿元,节约外汇5000万美元。 稀土加入钢中,可起到脱氧、脱硫、改变夹杂物形态等净化和变质作用,在某些钢中还能有微合金化的作用,稀土能够提高钢的抗氧化能力,高温强度和塑性、疲劳寿命、耐腐蚀性及抗裂性等。 1.稀土加入钢中的主要作用 净化作用:钢中加入稀土,可以置换钢中可能生成的硫化锰、氧化铝和硅铝酸盐夹杂物中的氧与硫,形成稀土化合物。这些化合物中有部分从钢液中上浮进入渣中,从而使钢液中的夹杂物减少,钢液得到净化,这就是稀土对钢的净化作用。 细化组织:由于稀土在钢中同夹杂物反应生成的稀土化合物熔点较高,在钢液凝固前析出,这些细小的质点,可作为非均质形核中心,降低结晶过程的过冷度,因此,不但可以减少偏析还可细化钢的凝固组织。 对夹杂物的形态控制:钢中加入稀土后,硫化锰将被在高温塑性变形能力较小的稀土氧化物或硫化物取代,这些化合物在轧制过程中不随钢一起变形,仍保持为球状,它们对钢的机械性能影响较小,所以钢中加入稀土可以提高钢的韧性,改善钢的抗疲劳性能。 在耐大气腐蚀钢中加入稀土,使钢的内锈层致密,而且与基体的结合力变强,不易脱离,可以阻止大气中O2和H2O的扩散,从而降低了腐蚀速度,加稀土的钢的耐腐蚀性比不加稀土的钢提高0.32.4倍。在MnNb系低合金高强度钢中加入稀土可以显著改善钢的冷弯性能、冲击性能、低温冲击性和耐磨性,大大改善了钢的加工性能并提高其使用寿命。在铁路钢轨中加入稀土,可显著提高钢轨的耐磨性、抗剥离性,经多年使用证明钢轨寿命提高1.5倍。 2我国主要稀土钢种 我国稀土处理钢有80多个牌号,年生产总量60万吨。但大量应用稀土的钢种只有十几种,主要钢种包括铜磷系耐大气腐蚀钢、锰铌系列低合金高强度钢、X系管线钢、铌稀土重轨钢,此外还有齿轮钢、轴承钢、弹簧钢、模具钢、工程机械用钢、低碳微合金深冲钢、不锈钢和耐热钢等。耐蚀低合金钢,经过稀土处理耐蚀率提高近10倍。用它制成的耐候货车使用寿命提高1倍,返厂进行大修的周期由6年延长至10年。1988年武钢生产了18万吨09CuPTiRE钢,可制造车皮2万辆,直接获利润4383万元,吨钢利润为243元,节省车皮的维修费用1.7亿元,而二次效益(用户效益)为944元/吨钢。 目前稀土钢新品种的开发,取得了重大成绩。包钢、北京钢铁研究总院、铁道部科研院联合研制的稀土铌重轨,耐磨寿命比U74、U71Mn重轨提高50%以上,1997年通过了冶金部和铁道部的联合鉴定,成为我国重轨的主要升级换代产品。另外,经二年的铺轨试验,攀钢和武钢生产的加稀土的管线钢,性能优异受到了石油部门的青睐。目前我国主要稀土钢种用途及生产厂家见表1。 表1 我国主要稀土钢种序号钢号用途生产厂家 109CuPTi(RE)09CuTiRE铁路货车、客车、桥梁武汉钢铁公司;攀枝花钢铁公司210CuP(RE)建筑、化工、桥梁、钢结构、钢门窗上海钢铁一厂;上海钢铁研究所306CuP(RE)汽车、铁路车箱、集装箱武汉钢铁公司440MnNbRE普通石油套管、液压支架、千斤顶包头钢铁公司 530MnNbRE抗H2S套管、抽油杆、高压气瓶包头钢铁公司 620REg锅炉用钢管包头钢铁公司 720RE普通流体管包头钢铁公司 818MnNb(RE)建筑结构级 螺纹钢筋包头钢铁公司 916MnRE造船及结构厚板、压力容器、汽车板武汉钢铁公司;鞍山钢铁公司10X60H石油管线武汉钢铁公司11X42、X52、X56、X60管线管钢宝山钢铁公司1220-25-30TiBRE齿轮钢大冶钢铁厂 1355SiMnVBRE弹簧钢大冶钢铁厂 14H295煤气瓶用钢太原钢铁公司 15BNbREPD3RE 铁路钢轨包头钢铁公司、鞍山钢铁公司、攀枝花钢铁公司 3钢中加入稀土的主要方法 钢中稀土加入方法以喂丝法为主,其次是稀土金属棒吊挂法,包内加入稀土硅铁合金法及包内喂入稀土硅铁合金包芯线法。各厂因钢种、浇铸工艺和设备不同选择合适的方法。 在稀土喂丝机的研制方面,包钢稀土研究院和武钢二炼钢厂等单位取得了长足的进步。稀土丝、棒和稀土硅化物合金、稀土硅铁包芯线产品较好地满足了各钢厂生产稀土钢的需要。钢中加稀土的设备不但投资少,而且还能获得明显的经济效益和社会效益。以喂丝法为例,一台喂丝机仅5万元,稀土加入量吨钢费用不超过40元,而效果却是事半功倍,能使钢材的横向冲击韧性提高一倍,改善热加工性能,从而提高成材率。 4稀土钢的发展趋势 最近国家冶金工业局制定了稀土在钢冶炼中的应用近期目标和远景规划,预计到2000年稀土处理钢产量将达到300万吨,保守估计1999年全国各类稀土钢产量将达到90150万吨,稀土应用量将达到500850吨,将超过1998年的1.32.3倍。19911997年稀土在钢中消费量见表2。表2 19911997年我国稀土在钢中消费量(REO,吨)年1991199219931994199519961997用量566710750300300350372二、稀土在铸铁中的应用 铸铁是高碳硅铁合金的通称,其碳含量在1.84.5之间,铸铁以碳在合金中的分布状态可分为灰口铸铁、球墨铸铁、珠光体铸铁、可锻铸铁和白口铁。我国从60年代中期开始研究稀土与铁的作用机理和处理工艺,先后解决了稀土球化剂、孕育剂的冶炼制备、稀土加入方法等问题。目前稀土处理的铸铁主要分三大类:球铁件、蠕铁件和高强灰铸铁件以及稀土处理的合金铸铁件。 1稀土加入铸铁中的主要作用 变质作用:突出表现为使片状石墨变成球状石墨。石墨球化可以减少应力集中,并细化铸态组织,改善非金属夹杂物的形状和分布,有利于材质性能的提高,因而稀土球铁具有高于灰铸铁的机械性能,其抗震性、耐磨性和切削加工性能比钢还好。 净化作用:铁水中经常含有氧、硫等有害杂质,这些杂质会使铸件产生气孔、裂缝,并形成夹渣,使材质的强度、韧性和塑性降低。而稀土元素与硫、氧的结合能力强,生成难熔化合物,在铁水中能起脱硫除氧作用。同时稀土还能消除铁水中有害元素如Pb、Zn、Bi等的不良影响。 改善铸造性能:稀土加入铁水中能显著的提高铁水的流动性,并减少偏析和热裂等铸造缺陷。 2稀土铸铁发展现状 目前,我国年生产稀土铸铁约150万吨,其中球铁管30万吨。稀土在铸铁中的消费量占我国稀土消费总量的25%。19911997年稀土在铸铁中的用量见表3。 表3 19911997年稀土在铸铁中用量(REO,吨) 年1991199219931994199519961997用量2800297030003480350038503800稀土铸铁主要应用于冶金行业的轧辊、钢锭模;汽车及拖拉机行业的曲轴、气缸体、变速箱、履带;机械行业的各种齿轮、凸轮轴、各种机座;建筑行业的各种口径的输水、气的管线和暖气片。我国稀土铸铁的产量自1993年以来均以9%的年增长速度递增,1998年产量在110万吨左右,其稀土用量为3800吨,占国内稀土总用量的1/4左右,已成为国内稀土应用最大的领域。 三、稀土在有色金属中的应用 1稀土加入到有色金属中的主要作用 稀土具有很高的化学活性和较大的原子半径,加入到有色金属及其合金中,可细化晶粒、防止偏析、除气、除杂和净化以及改善金相组织等作用,从而达到改善机械性能、物理性能和加工性能等综合目的。 由于稀土金属的净化、调质作用,对这些有色金属都能起到细化晶粒,提高再结晶温度,从而对铸造合金能显著地改善工艺性能,对变型合金能显著地提高加工性能;对镍、钴基的耐热合金能提高抗氧化和抗高温腐蚀的能力,对超硬合金可以改善韧性和耐磨性。这些性能的改善,都显著地提高了生产企业及使用单位的经济效益,并能为国家减少这些宝贵资源的消耗。 2稀土在有色金属中的应用 (1)稀土在铝电线、电缆中的应用 目前我国的稀土铝导线主要有高强度稀土铝合金电缆,成份为Al-Mg-Si-RE,用于高压输电线路,它的抗拉强度达到26g/mm2,弧垂性能和弯曲性能好,使用寿命长。高导电铝电线,成份为Al-RE,稀土的加入量为0.150.3%。在较高温度下(150)使用的高导电稀土铝导线其成份为Al-Zr-RE,其载流量为纯铝线的1.62.0倍,用作大电流导线。每年生产的稀土铝电缆、电线不仅满足国内市场的需求,还大量出口,经济效益显著。稀土铝高导电电线和稀土铝合金电缆线产量预计1999年将达到50万吨左右,稀土消费量在1000吨左右。 (2)6063稀土铝合金及应用 这是一种最常用的变形合金,多用于工业和民用建筑,其成份(%)为Mg0.670.70,Si0.450.48,Fe0.200.21,余为铝。在该合金熔炼过程中加入0.200.25%的稀土金属,抗拉强度提高24%,挤压速度提高0.5倍,成材率提高3%,并改善了表面质量。增加了耐蚀性和着色性。另外还有添加稀土的Al-Si-M(M=Cu,Mg,Mn)合金用于制造汽缸缸体和活塞。 (3)稀土锌铝热镀合金 为防止钢材腐蚀,通常用Zn-Al热镀合金(Galfan)比镀锌具有更好的加工成形性和耐腐蚀性,但锌耗较高,耐蚀性也有待改善。近年Zn-Al-Mg-RE热镀合金开发成功并投入生产。这种稀土热镀合金的流动性、耐蚀性、镀层的形成性能都优于锌和Zn-Al合金。 (4)稀土铜耐磨合金 一般轴瓦材料用锡青铜(即巴氏合金),但价格较贵。稀土耐磨铅青铜合金(RPH)的使用寿命是巴氏合金的1.5倍,而吨成本比后者又降低了50006000元。目前已在纺织机械中使用。(5)稀土硬质合金 硬质合金用于金属切削、钻头、模具等方面,其硬度大、强度高,但抗弯性差、易打损。稀土添加剂同粘结剂与硬质相WC、TiC一起球磨钛,制备硬质合金原料粉,再经压型烧结工艺过程生产的硬质合金,抗弯强度提高约15%,硬度提高0.5RHA,使用寿命提高一倍以上。 (6)稀土镁合金 稀土镁合金比强度高,对减轻飞机重量,提高战术性能具有广泛的应用前景。中国航空工业总公司研制的稀土镁合金包括铸造镁合金及变形镁合金约有10个牌号,很多牌号已用于生产,质量稳定。稀土元素在镁合金中溶解度大,因而有明显的热处理强化作用。在铸造和变型镁合金中加入金属钕、钇显著地提高强度和工艺性能。目前已工业生产的铸造镁合金有ZM2、ZM4、ZM6;变型稀土镁合金有BM6、BM25。另外稀土镁合金在医学工程上的应用也在研究中,目前该材料正在做医学生物实验,有望用稀土镁合金作为人工骨接材料代替现用金属夹具,减少病人第二次取出夹具的手术,这又将开辟稀土镁合金一个新的广阔的应用天地。 3稀土在有色金属中的应用发展现状 稀土在有色金属及合金中应用开发潜力大,但开发的深度和广度不够。目前稀土在有色金属及其合金中应用研究表明,对加入稀土元素有明显效果的有铝、铜、镁、钛、钼、镍、钴、钽、铌及铂族金属等,稀土金属在这些有色金属及合金中的添加量通常不少于0.5%,但产生的效果极为显著。 目前除稀土在铝导线和少部分铝合金上的应用开发达到工业化规模外,在其它有色金属及合金中的应用,还未达到工业规模。我国生产的稀土铝电缆年产约30万吨,稀土在有色金属中的用量呈逐年递增的趋势,19911997年我国稀土在有色金属中的用量见表4。 表4 19911997年我国稀土在有色金属中的用量(REO,吨) 年1991199219931994199519961997用量4204405506006507507881.2 稀土在高温超导材料中的应用 1前言 自1911年荷兰人翁纳斯(K*Onnes)在汞中首次发现超导性以来,至今全世界共发现28种金属和上千种合金或金属间化合物具有超导性。遗憾的是这些物质由常导态到超导态的临界转变温度Tc最高的只有23 K(Nb3Ge),其中常用的Nb-Ti,Nb3Sn等已商品化的超导材料必须在液氦(Tc为4.2 K,每升约10美元)环境中工作,这不但增加了成本,也给操作带来了不便。为此寻找高温超导材料成为科技界多年来追逐的主要目标。其中稀土元素自然也成为寻找的对象。这是因为金属镧的Tc值在16 GPa的高压下约为11 K,同时1975年和1976年分别在BaPb1-xBixO3(Tc=13 K)和LaMo6Se8(Tc=11 K)中发现了超导性。也许正是在这样的背景下,缪勒和柏诺兹于1986年才在氧化物陶瓷特别是以镧为组分的氧化物陶瓷上另辟蹊径,终于在LaBa2CuO4(Tc=35 K)上取得历史性的突破。紧接着朱经武和赵忠贤又迈出了具有决定意义的一步,发现由另一个稀土元素钇构成的Tc越过液氮温区(Tc=77 K,每升约0.16美元)的钇钡铜氧(YBa2Cu3O7-)。YBCO的Tc高达92 K,是一个具有实用意义的高温超导材料。此后相继发现除铈、铽、镨外,其它所有镧系元素包括钇在内,都能形成通式为RBa2Cu3O7-,超导转变温度介于92 K(R=Y)至95 K(R=Nd)之间的高温超导化合物。在理论上这类化合物的上临界场可高达160 T,故亦可视之为高场超导体。稀土铜氧基高温超导化合物的出现,除带来具有挑战意义的认知问题外,还表现出巨大的技术应用潜力。近年来在一些应用中技术前沿问题的初步解决,为稀土作为原料在高温超导领域中的应用开发展现了美好的前景1。 2稀土超导体的类别 缪勒等发现的La2-xBaxCuO4及其后出现的以YBCO为代表的RBa2Cu3O7-在结构上呈层状类钙钛矿型晶体结构,由被AmOn层(A其它元素,O氧)隔开的导电的CuO2面组成。电荷的迁移主要由保留在CuO2面内的空穴完成,AmOn层起电荷储存器作用并借荷电载流子控制CuO2面的掺杂。故在分类上把其叫做空穴掺杂超导体。鉴于这两种高温超导化合物的晶胞内含有两个铜氧(CuO2)面,又称其为双铜氧层化合物。 空穴掺杂超导体多为高Tc超导体。1988年日本人发现了又一种通式为Ln2-xMxCuO4-y(Ln=Pr,Nd,Sm,Eu;M=Ce,Th;x约等于0.10.18;y约等于0.02)的稀土超导化合物1,2,其晶胞内仅含一个CuO2面,又称做单铜氧层化合物。其导电机制为电子导电,故叫做电子掺杂超导体。如在反铁磁绝缘化合物Nd2CuO4内用4价铈代替部分3价钕,使铜氧面获得电子的明显掺杂,导致Nd2-xCexCuO4-y在大约25 K的Tc(亦有报道Tc的最大值可达28 K)表现出超导性。 以YBa2Cu3O7-即YBCO(又简称做Y-123)为代表的钇系超导材料中,除Y-123相外,还存在Y-124超导相(YBa2Cu4O8)和Y-247相(Y2Ba4Cu7O15),其中Y-124和Y-123相比,由于在块材状态不存在热稳定问题,故预计将会部分取代Y-123。Y-124的Tc约为80 K,但用钙代替部分钇可使Tc提高到90 K。最近日本人在一般的氧压(0.1 MPa)下通过固相反应成功地合成了Y-124块材,并且不必采用专门的烧结技术3,4。 除上述稀土氧化物陶瓷超导体外,稀土还是含局域化磁矩超导体即所谓磁性超导体和重费米子超导体(近藤合金)的主要组成部分。这两种超导体都属于金属互化物类型。前一类超导体涉及超导性与磁性的相互作用或超导性与反铁磁有序化的并存,ErRh4B4,HoMo6S8,YPd2B2C,YNi2B2C等即属于此类超导体;后一类超导体其电子比热的线性系数特别高,电子有效质量约为自由电子的102倍103倍(与近藤效应有关)如CeCu2Si2,CeRu2Si2等,其中CeRu2的Tc最高,为6.1 K。目前对这两类稀土超导体的理论研究颇多,尤其是对含局域化磁矩的RNi2B2C(R一般包括Lu,Y,Tm,Er,Ho,Dy)型超导体的研究明显增多。这种磁性超导体如LuNi2B2C的Tc值为16.6 K,YNi2B2C的Tc值为15.6 K。据1998年的最新报道,韩国有人用快淬法已加工出适合某些用途的YNi3B3C薄带材(Tc=16 K)5。 目前看来,在上述几类稀土超导体中,真正具有广泛应用潜力和产业化前程的当推以YBa2Cu3O7-(YBCO)为代表的稀土铜氧化物高温超导陶瓷。最近日本对同属RBa2Cu3O7-的NdBCO和SmBCO进行的研究表明,轻稀土钡铜氧化合物LREBCO(LRE指轻稀土中的钕、钐、铕、钆)经适当加工制成的块材,表现出比YBCO系材料具有更强的磁通钉扎力,随着Jc值提高,可捕集非常高的磁场(在77 K,大于5 T),同时还由于NdBCO块材的加工速率比YBCO块材快50倍(在温度梯度下于空气中)故LREBCO更适合批量生产1,2,6。 3稀土钡铜氧超导体工艺上的进展在过去12年来发现的百余种高温超导化合物中,以YBCO最突出。就性能而言,其Jc已从10 A/cm2跃增至106 A/cm2以上;临界磁场已由0.01 T提高到大于9 T。并且已能从多个商业渠道获得优质的粉体、块材、薄膜和厚膜材料。但线材、带材的加工工艺不及铋系材料(Bi-2223)7。3.1制粉 重现性地合成具有最佳超导性能的YBCO等稀土铜氧化物超导粉,是开发应用稀土高温超导体的最关键的第一步。目前合成YBCO粉的技术主要包括普通的固相反应法、沉淀法、等离子体喷涂法、冷冻干燥法、喷射干燥法、燃烧合成法、溶胶凝胶法、醋酸盐法及火焰合成法等多种方法,其中以溶液混合为基础的方法最受青睐,因为可实现分子水平的混合。目前已能按用户要求“定做”形状为等轴或球形、结构上为单晶或多晶及碳和氮等杂质含量极低的具有确定组成或相组合(如引入Y2BaCuO5即211相以提高钉扎力)的小于1 m的超细粉。在规模上已实现20 kg100 kg高纯YBCO粉的批量生产(粉径介于0.5 m5 m),并出现年产10 t YBCO粉的中试装置。 YBCO粉主要用于制造熔融加工技术产品(如磁浮器)和烧结产品(如溅射靶和激光烧蚀靶),为制造薄膜、带(线)材和块材提供初级产品。实际上,全世界十余年来围绕高温超导商品化所从事的工作,就是开发制造长带(线)的工艺和开发生长电子器件用薄膜的工艺。显然,制粉技术的商品化为这两个领域走向批量生产铺平了道路8,9。 3.2薄膜 YBCO薄膜在微电子器件制造中有广泛的应用潜力,同时,还由于薄膜的表面平整、取向排列好与结构完整,易于获得较高的Jc,因此发展很快。目前已出现多种薄膜生长技术,应用最多的有金属有机化学气相沉积技术(MOCVD)、溅射技术、共蒸发技术和脉冲激光沉积技术(PLD)。这些技术日趋成熟,从扩大规模的可行性、薄膜质量、沉积速率、可靠性、重现性、产率、环保和安全等方面看,已达到或接近商品化的水平。 在薄膜生长方面,由于实现了晶粒在a/b面的面内取向排列(inplane alignment),提高了控制薄膜成分的精度以及开发了能沉积大面积薄膜的系统,使YBCO薄膜的质量明显提高。目前YBCO薄膜的电输运性能达到Tc=92 K;(300 K)约150 cm;Jc(77 K,H=0)约5106 A/cm2的水平。YBCO薄膜的最大沉积面积已达直径为15 cm20 cm。加热器在允许衬底处于确定而均匀的高温前提下,其尺寸已扩大到一次沉积能同时处理12个直径5 cm的晶片,或5个直径7 cm的晶片,或者3个直径10 cm的晶片。 由于蜂窝电话寻呼站采用YBCO滤波器(较铜滤波器抗干扰能力提高1 000倍)及医用超导量子干涉器采用YBCO约瑟夫森结,它们的进入市场将成为YBCO薄膜生产的产业化,拓展一条越走越宽的希望之路10,11。 3.3带材 目前用粉管法(PIT)已制出长达1 260 m的Bi-2223超导长带(Jc=12 000 A/cm2,H=0),大大加快了实用化的进度。同时也促成了YBCO涂层金属带的发展。YBCO涂层金属带是薄膜生长工艺取得明显进展的另一个领域。制造YBCO柔性线材,由于存在Jc值低、弱连接和机械性能差的问题,必须采用在织构化的柔性金属衬底上实现薄膜沉积技术,才能得到可供输送电力用的高Jc值超导长带。对这种涂层带短样进行的测试表明,其工作性能比铋系材料高10倍100倍,尤其是YBCO能经受高的磁场(特别是在高于40 K的温度下)。 目前已有4种方法可在金属柔性衬底上沉积YBCO薄膜,这4种方法是离子束辅助沉积(IBAD)、轧制辅助双轴织构化(RABiT)、脉冲激光沉积(PLD)和金属有机化学气相沉积(MOCVD)。日本用IBAD法已将YBCO沉积在柔性不锈钢带上,并处于世界领先地位。美国则在双轴织构化的镍和铜衬底上以CeO2作缓冲层,用RABiT法沉积上1 m厚的YBCO层,这种金属带的Jc值约为106 A/cm2。日本准备扩大IBAD法的规模,销售YBCO线材。美国的RABiT法比较简单,易于扩大规模,也存在产业化的可能。YBCO超导带的应用预计会大幅度降低电力设备的规格,明显提高其工作性能6,7,10,12。 3.4块材 YBCO弱连接的出现是由于形成大角度晶界而阻碍超导电流通过。避开弱连接的主要途径是织构化,即使晶粒呈取向排列,为此世界各国普遍使用熔融织构生长(MTG)法、液相处理(LP)法、淬火熔融生长(QMG)法及我国独创的粉末熔化处理(PMP)13,14等熔融处理制造块材的方法。1992年曾制出45 mm45 mm17 mm的YBCO块材,通常可获得直径35 mm,高18 mm,质量约70 g的圆柱体或40 mm见方、厚18 mm,质量约125 g的块状体。目前已能小批量生产,一批可制造30个圆柱体或16个块状体。 近年来日本采用控氧熔融生长(OCMG)法在制备轻稀土钡铜氧块材方面取得了重大进展。并在低氧分压条件下进行熔融生长,获得比原有熔融加工技术更高的Jc(在2T3T磁场内达30 000 A/cm2)和明显改善的不可逆磁场Hirr(77 K),并能以工业上可行的途径实现极强的磁通钉扎。在熔融生长时保持低的氧分压PO2,是取得成功最关键的加工参数。例如在含0.1%O2的氩气氛中(PO2=10-4 MPa)进行NdBCO超导体的熔融加工,Tc的起始温度高达96 K,转变点十分清晰。SmBCO和EuBCO的熔融生长也呈这种趋向,但其最高的起始Tc略小于96 K。 提高Jc的关键在于对缺陷类型、数量和分布的控制。对于NdBCO,采用控氧熔融生长,由于存在富钕区,即在高Tc基质内分布有低Tc的钕代钡区,这个区域在低磁场内具有超导性,对磁通钉扎没有贡献;但在高磁场便转变为常导态,形成有效的磁通钉扎格点,从而使Jc明显提高。这种途径比采用各种辐照(中子、质子、重离子)方法引入缺陷实现磁通钉扎的办法在经济上更现实可行。 此外,钇系材料的定向凝固过程极慢,生长速度为1 mm/h3 mm/h。而轻稀土在液相内的溶解度较之钇在液相极为有限的溶解度相对较高。Salama等人1996年曾报道,NdBCO块材的加工速度在空气中及高温梯度下约为YBCO块材的50倍,这表明轻稀土体系比钇系更易实现批量生产。因此,日本一些从事YBCO研究的人员正在转而研究NdBCO。 OCMG法使稀土高温超导块材能够在液氮致冷条件下获得真正的应用。永磁体和熔融加工YBCO超导块材之间强大的排斥力和吸引力为块材的应用开辟了多种途径。日本和美国已建成超导磁轴承和储能飞轮系统的样机。一个2.4 kg的超导磁轴承(YBCO块材作定子、永磁作转子)能以30 000 rpm的速度安全旋转。估计不久将建成储能容量为10 kwh的储能系统,用于建筑物、超级计算机、日夜负荷调节系统的后备电源。70年代初期开始研究的磁浮列车使用的是Nb-Ti低温超导磁体,这种磁体被安装在列车的底部,当列车行进时则在轨道内产生磁场,该磁场推斥超导体,从而使列车浮在轨道上,实现车和轨道间的无摩擦行驶。但是依靠低温超导合金在成本和低温致冷系统的复杂上,使磁浮列车并不经济。日本近年来的工作有可能用钇系等高温超导材料代替低温超导磁体。此外,在磁浮列车中为防止磁力线穿透到列车内部,必须使用大量的铁磁性材料作磁屏蔽,而为使列车轻型化,可考虑使用熔融生长的YBCO和LREBCO块材。大型屏蔽板由许多熔融织构化块材构成的瓦组成。为排除磁场,解决瓦之间的弱连接的问题,可采用叠层结构以减弱磁通漏氵曳。YBCO块材在磁浮列车中作为强磁体代替Nb-Ti超导磁体线圈的条件是在77 K能捕集5 T以上的磁场。但YBCO块材现阶段的主要缺点是在77 K的不可逆磁场Hirr比较低,从而限制了可捕集磁场的最大值。最近的开发工作表明,轻稀土钡铜氧LREBCO块材的Hirr要高得多,在生产块材的过程中如处理得当,在77 K可捕集大于10 T的磁场,因此可代替Nb-Ti用作磁浮列车的磁体。由于轻稀土钡铜氧块材较YBCO有更强的磁通钉扎力,因此必将推动高温超导块材在电力、储能、运输系统等方面的应用6,9,1517。 4市场展望 从工业结构看,全球的超导体工业由大约60家生产超导材料和器件的公司组成,其中24家公司从事低温超导生产,而涉及高温超导原料供应,线材、带材和元件开发或生产的公司至少有50余家。由这50余家公司构成的高温超导工业中,有12个厂家供应高温超导粉,大约有6家正在生产或者开发高温超导元器件。 美国从事元器件开发和样机生产的高温超导公司有美国超导公司、Conductus公司、伊利诺斯超导公司、超导元件与超导工艺公司等。目前美国公司在线材的开发上居支配地位,而在电缆的开发上美国不及日本。以德国和英国为核心的欧共体等国亦颇具实力,在高温超导工艺商业化方面将与美、日展开一场长期的国际竞争。 全世界超导元器件总的市场规模1997年为4.6亿美元(2002年将达到7.15亿美元),其中高温超导为1 500万美元,估计2002年将激增至6 200万美元。目前尽管高温超导在技术上和投资上仍存在问题,但它以比液氦便宜50倍的液氮为工作介质,具有低温超导无法企及的优点,其在电力设施和能源系统中的应用已接近实现产业化。除铋系材料外,钇系材料因为轻稀土钡铜氧材料的加盟,使稀土高温超导的开发与商品化将别开生面。钇钡铜氧的发现给科技界造成极大的冲击,但初期的进展却异常缓慢。但是近5年的情况却有很大改观,提高工作性能及发现新材料(如RNi2B2C)两方面的高速发展,都给稀土在超导领域的应用开发带来新的希望。估计2010年前,高温超导将成为稀土应用的重要领域。 1.3 稀土在航空工业中的应用现状与发展趋势 1 前言 早在50年代我国仿制的飞机和导弹的蒙皮、框架及发动机机匣已采用稀土镁合金,70年代后,随着我国稀土工业的迅速发展,航空稀土开发应用跨入了自行研制的新阶段。新型稀土镁合金、铝合金、钛合金、高温合金、非金属材料、功能材料及稀土电机产品也在歼击机、强击机、直升机、无人驾驶机、民航机以及导弹卫星等产品上逐步得到推广和应用。 2稀土材料及其在航空工业中的应用 21稀土镁合全 稀土镁合金比强度较高,对减轻飞机重量,提高战术性能具有广泛的应用前景。中国航空工业总公司(简称:中航总)研制的稀土镁合金包括铸造镁合金及变形镁合金约有10多个牌号,很多牌号已用于生产,质量稳定。例如:以稀土金属钕为主要添加元素的ZM6铸造镁合金已扩大用于直升机后减速机匣、歼击机翼肋及30KW发电机的转子引线压板等重要零件。中航总与有色金属总公司联合研制的稀土高强镁合金BM25已代替部分中强铝合金,在强击机上获得应用。“八、五”期间,为了扩大稀土镁合金的推广应用,还开展了稀土镁合金在医学工程上的应用。目前该材料正在做医学生物实验,有望稀土镁合金作为人工骨接材料代替现用金属夹具,减少病人第二次取出夹具的手术,又将开辟了一个新的广阔的应用天地。 稀土铸造镁合金主要用作200300以下长期使用,它具有好的高温强度和长期抗蠕变性能。各种稀土元素在镁中的溶解度不同,增加的顺序为镧、混合稀土、铈、镨、钕。它对常温、高温力学性能的良好影响也随之增加。中航总研制的以钕为主要添加元素的ZM6合金在热处理后不但具有高的室温力学性能,而且还有良好的高温瞬时力学性能和抗蠕变性能,可在室温下使用,也可在250下长期使用。随着含钇抗蚀新型铸造镁合金的出现,近年来铸造镁合金重新受到国外航空工业的青眯。 在镁合金中添加适量的稀土金属以后,可以增加合金的流动性,降低微孔率,提高气密性,显著改善热裂和疏松现象,使合金在200300高温下仍具有高的强度和抗蠕变性能。22稀土钛合金 70年代初,北京航空材料研究院(简称:航材院)在TiA1Mo系钛合金中用稀土金属铈(Ce)取代部分铝、硅,限制了脆性相的析出,使合金在提高耐热强度的同时,也改善热稳定性能。以此基础上,又研制出了性能良好的含铈的铸造高温钛合金T3。它与国际同类合金相比,在耐热强度及工艺性能方面均具有一定的优势。用它制造的压气机匣用于WPI3发动机,每架飞机减重达39公斤,提高推重比1.5,此外减少加工工序约30,取得了明显的技术经济效益,填补了我国航空发动机在500条件下使用铸钛机匣的空白。研究表明,含铈的ZT3合金组织中存在着细小的氧化铈质点。铈化合了合金中的一部分氧,形成了难熔的、高硬度的稀土氧化物质点Ce203。这些质点在合金形变过程中阻碍了位错运动,提高了合金高温性能,铈夺取了一部分气体杂质(尤其是在晶界上的),就有可能在使合金强化的同时,保持良好的热稳定性能。这是在铸造钛合金中应用难溶质点强化理论的首次尝试。 此外航材院在钛合金溶模精密铸造工艺中,经多年研究,采用了特殊的矿化处理技术,研制出了稳定廉价的氧化钇砂料与粉料,它在比重、硬度和对钛液的稳定性上,都达到了较好的水平,而在调节控制壳料浆性能上,表现出更大的优越性。用氧化钇型壳制造钛铸件的突出优点是:在铸件质量和工艺水平与钨面层工艺相当的条件下,能制造比钨面层工艺更薄的钛合金铸件。目前,该工艺已广泛用于制造各种飞机、发动机及民品铸件。 23稀土铝合金 中航总研制的含稀土耐热铸造铝合金HZL206,与国外含镍的合金比较,具有优越的高温和常温力学性能,并已达到国外同类合金的先进水平。现已用于直升机和歼击机工作温度达300的耐压阀门,取代了钢和钛合金。减轻了结构重量,已投入批量生产。稀土铝硅过共晶L117合金在200300下的拉伸强度超过西德活塞合金KS280和KS282,耐磨性能比常用活塞合金L108提高 45倍,线膨胀系数小,尺寸稳定性好,已用于航空附件KY5,KY7空压机和航模发动机活塞。稀土元素加入铝合金中,明显改善显微组织和机械性能。稀土元素在铝合金中的作用机制为:形成分散分布,细小的铝化合物起着显著的第二相强化作用;稀土元素的加入起到了除气净化作用,从而减少合金中气孔的数量,提高合金的性能;稀土铝化合物作为异质晶核细化晶粒和共晶相,也是一种变质剂;稀土元素促进了富铁相的形成和细化,减少了富铁相的有害作用。A1中Fe的固溶量随稀土加入量的增加而减少。也对提高强度和塑性有利。 2.4稀土非全属材料 稀土有机灌注料XZ1已用于高性能发动机控油系统的燃油电磁开关,液压电磁开关等八种电磁铁产品,由于成本低,施工简便,因此可以大量取代环氧灌注料,具有很好的经济效益。系统防老化橡胶涂料KF1的研制成功,解决了长期以来飞机油箱使用寿命短的难题,KF1的投入使用,使得飞机油箱使用寿命由原来的35年延长到1520年,并提高了使用性能,取得了显著的技术经济效益。含Y2O3的MCrAIY涂层是发动机涡轮叶片、导向叶片等发动机热端部件用的可设计成分的第三代涂层,已在国外高性能、长寿命发动机上得到应用。航材院采用磁控溅射沉积工艺和多弧离子镀技术已研制成功这种涂层系列,其抗热腐蚀及综合性能已达到国外同类涂层的先进水平。该涂层系列已被高温合金、定向凝固合金、单晶合金和NiA1基合金涡轮叶片、导向叶片选用,作为高温抗氧化涂层已在先进发动机和地面燃气涡轮机上使用。Y2O3在该系列涂层中起着涂层与基体合金的“钉扎”作用,显著提高了涂层与基体的结合力。稀土添加剂在化学热处理方面也起到了重要的作用,由于稀土元素具有特定的电子结构和很高的化学活性,在化学热处理中有显著的活化作用,对改善渗层的组织和性能及提高渗层速度有明显的效果。中航总310厂将常规渗碳、氮和碳氮共渗与加入稀土添加剂工艺进行比较,渗剂中加入稀土元素,初步试验研究表明渗速可提高30。加入稀土的高速钢氮碳共渗硬度Hv从933946可提高13501478。稀土元素用于化学热处理的方法简便易行,对设备无特殊要求,对提高产品重量和节省能源都具有重要意义,有很好的推广应用价值。 2.稀土永磁材料 稀土永磁材料发展十分迅速,现已在许多领域里得到了广泛的应用,成为当代新技术的重要物资基础。自80年代以来利用钐钴合金做稀土永磁电机。产品类型包括伺服电动机、驱动电动机、汽车启动机、地面军用电机、航空电机等,部分产品出口,钐钴永磁合金的主要特点是:(1)退磁曲线基本上是一条直线,其斜率接近于逆磁导率,即回复直线近似与去磁曲线重合;()具有极大的矫顽力,有很强的抗去磁能力;(3)具有很高的最大磁能积;(4)可逆温度系数很小,磁性的温度稳定性较好,由于以上特点,稀土钐钴永磁合金特别适合在开路状态、压力场合、退磁场情况或动态情况下运用,并适合制造体积的小的元件。 中航总125厂生产的160LY?.2永磁直流力矩电机使用钕铁硼(NTP2006)磁钢。用钕铁硼永磁代替钐钴永磁成本降低,性能提高。该厂生产的QZDM01稀土永磁浅车启动机,使用了钕铁硼磁钢,该产品为稀土减速启动机。使用稀土磁钢,使启动机体积小、效率高、输出力矩大、启动速度快。国内SmCo系永磁材料的温度系数待改进,NdFeB系永磁材料的高温稳定性和耐腐蚀性需要进一步提高,粘结NdFeB系永磁材料还处于研制开发阶段。 永磁材料的发展先后经历了铁氧体阶段(磁能积4.6MGOe),AINiCo合金阶段(磁能积11.5MGOe),SmCo阶段(磁能积31.0MGOe),NdFeB阶段(磁能积43MGOe)。钛铁硼稀土永磁材料的研制成功,使耳机、扬声器、步进电机、无芯电机等实现了超小型化。美国通用汽车公司在1000cc汽车发动机上采用NdFeB永磁体,使发动机重量减少4050,尺寸减少45。若能提高该材料的使用温度,将开辟该材料更为广泛的应用前景。 3.稀土元素在航空材料发展中的作用 稀土元素在航空材料发展中的作有是由稀土元素的性质决定的。稀土元素的原子半径大于常见金属如Al、Mg等,因此稀土元素在这些金属中的固溶度极低,几乎不能形成固溶体;由于稀土元素具有很高的化学活性,稀土元素在化学反应中异常活泼,极易与气体(如氧)、非金属(如硫)及金属作用,生成相应稳定的化合物;这些新形成的化合物多数是溶点高、密度小、化学性质稳定,稀土元素在金属中的作用大体可归纳为如下几个方面: (1)减轻非金属杂质的有害影响。氢是钢和铝合金的有害杂质,溶入液态金属的氢凝固时以原子态析出,聚集成分子,导致出现晶间裂纹、疏松和针孔等氢致缺陷,给铸造、塑性加工和性能带来严重危害,实验表明铝及其合金中加入适量稀土(0.10.3)将明显的降低氢的含量,起到减少氢的危害作用提高合金的性能,此外稀土金属也有降低铝中硫和氧含量的效果。其化学反应式如下: 4/3RE2O2/3RE203(固) RE十HREH(固) RE(瓶)十MnS(固)RES(固) Mn(瓶) 反应生成的稀土化合物,熔点高、比重轻,上浮成渣。而它们的微小的质点则成为铝结晶过程的异质晶核。 ()细化晶粒和枝晶组织,提高热塑性。稀土可细化合金的铸态组织,使枝晶网络更为清晰,从而改善合金的热塑性。稀土化合物微小的固态质点提供了异质晶核或在结晶界面上偏聚阻碍晶胞的长大,为钢液结晶细化提供了较好的热力条件。 (3)改变夹杂物的形态和分布。稀土与杂质形成化合物,在晶界析出,改变了原来的固溶存在方式,使夹杂物量降低。 (4)产生强化作用,稀土加入合金中使氢氧和夹杂物量降低,又细化了晶粒和枝晶网络,稀土与非金属元素作用产生高溶点的化合物弥散于基体中,稀土与金属元素生成高溶点的金属问化合物,即消除粗大块状组织,又稳定晶界,这些都起到了提高材料强度的作用。()稀土的引入提高了含稀土合金材料的耐腐蚀性和抗高温氧化性能。稀土元素的加入在铸造、锻造、焊接、热处理及表面涂层技术中也作了一些研究,许多都取得了正的效应,但稀土元素在这些热工艺过程中及制件中所超的作用机理有待进一步开发研究。 4 稀土在航空材料上的应用展望 由于稀土金属的原子半径大,极易失掉最外层2个s电子和次层的5d一个电子或4f的一个电子,而成三价离子。因此稀土金属在化学反应中异常活泼,极易与其它物质反应。又由于稀土元素具有电子未完全充满4f层的特性,而引导出各种磁、电和光的特性效应以及其它特殊性能。稀土元素的这些有吸引力的性能及广阔的潜在用途,引起了航空材料科学家的极大重视及广泛的研究,近期的研究重点: 41稀土陶瓷材料 稀土材料在高推比航空发动机上的应用出现新进展。近年来中航总公司开展了稀土在结构陶瓷方面的应用研究。氮化硅陶瓷具有高温下强度高、抗热震性能好、高温蠕变小等优良的性能,是一种最有希望用于高推重比发动机的新型结构陶瓷材料。氮化硅陶瓷仍遵循着液相烧结机理,需加入一些氧化物添加剂与Si3N4,颗粒表面的出SiO2层反应,生成液相以促进烧结。引入A120,、MgO等氧化物为烧结助剂后,氮化硅陶瓷的断裂韧性和强度并不高,但引人稀土氧化物Y2O3即Y203一A1203,或Y2O3一MgO为烧结助剂,氮化硅陶瓷的常温断裂韧性和强度得到明显的改善,但高温性能并不好。近年来的研究发现以稀土氧化物Y203和La203为添加剂,材料的力学性能大幅度提高,尤其是高温断裂韧性得到明显改善。研究表明:Y2O3和La203的引入对氮化硅陶瓷中一Si3N4,晶粒的生长行为有重要影响,从而影响了氮化硅陶瓷的结构和性能。选适当比例和含量的Y203和La2O3作添加剂,可得到轴比较大的一Si3N4晶粒,这样使氮化硅陶瓷产生了自增韧的效果。陶瓷属脆性材料,一般不能用于结构件。为了克服其脆性。通常引入纤维、晶须等增强组份,但这就产生了不同形态的组份难以均匀分散,给制造工艺带来困难。目前这一问题正是限制陶瓷料在高技术领域里应用的关健。将稀土氧化物引入陶瓷粉未中,能够在陶瓷烧结过程中产生原位增韧即自增韧的效果,恰好克服了上述引入纤维、晶须等带来的制造上的困难。因此在陶瓷材料中引入稀土氧化物,将为陶瓷材料在高新技术领域里开阔一个更为广阔的应用前景。专用集成电路为适应作战需要,必须抗辐射加固,提高可靠性,同时集成电路和计算机技术向更高电路密度和更快运算速度发展,均推动陶瓷材料基片及其封装向更高性能和更精细工艺方向发展。作为基片材料,必须满足低介电常数,高热导率,高机械强度,与半导体芯片相匹配的热膨胀系数。氮化铝(AIN)多层基片与传统的氧化铝(A1203)基片相比,有较高的导热率,适用于高功耗、高引线数和大尺寸芯片,成为近年来航空及军工行业开发的重点。采用稀土氧化钇(Y203,)和氧化钙混合添加剂,可以降低氮化铝的烧结温度,促进烧结。这种掺杂后的氮化铝(AIN)陶瓷,导热率260W(m.K),适于高密度布线,热阻仅为同样结构和相同引线数的氧化铝封装的1/4,这种基片已用于含1800个输入输出头的计算机系统的多层布线阵列的封装。 42稀土永磁材料 稀土永磁材料是制备高性能微波功率管一行波管的关键材料。现代军事通讯、雷 达、导弹制导和电子战都需要各种行波管,其特点是工作频带宽(218GHz),效率高(达50)。海湾战争中美国使用的电子干扰设备、预警飞机、火控雷达、精密制导系统,都用了大量高性能宽带大功率行波管,制造这些高功率行波管的关键是高磁能积、低温度系数的稀土永磁材料。这材料对实现军用电机的高效率、小型化和轻质化,以及促进军用计算机性能的提高也是十分重要的。根据我国目前稀土永磁材料发展的实际情况,今后在航空航天领域里稀土永磁材料研制开发的主要方向有:(1)高稳一性SmCo系永磁材料;()高工作温度NdFeB系永磁材料;(3)快淬NdFeB磁粉及粘结NdFeB系永磁材料;()新型SmFeN系永磁材料;()低成本、高性能第四代稀土永磁材料。 43稀土铝合金 航空用A1-Cu-Mg-Fe-Ni系耐热铝合金LD7和LD8的工作温度不能超过270,Al-Cu-Mn系的LYI6或2021的工作温度不能超过300,除了烧结铝粉末外,还没有可在350400下工作的铝合金。Sc能将铝合金的再结晶温度提高到450550,共格沉淀

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论