过程装备与控制工程专业英语翻译-19.doc_第1页
过程装备与控制工程专业英语翻译-19.doc_第2页
过程装备与控制工程专业英语翻译-19.doc_第3页
过程装备与控制工程专业英语翻译-19.doc_第4页
过程装备与控制工程专业英语翻译-19.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Unit 19 Types of Heat ExchangersHeat exchangers are equipment primarily for transferring heat between hot and cold streams.They have separate passages for the two streams and operate continuously.The most versatile and widely used exchangers are the shell-and-tube types but various plate and other types are valuable and economically competitive or superior in some applications.These other types will be discussed briefly but most of the space following will be devoted to the shell-and-tube types primarily because of their importance but also because they are most completely documented in the literature.Thus they can be designed with a degree of confidence to fit into a process.The other types are largely proprietary and for the most part must be process designed by their manufacturers.Plate-and-Frame Exchangers Plate-and-frame exchangers are assemblies of pressed corrugated plates on a frame. Gaskets in grooves around the periphery contain the fluids and direct the flows into and out of the spaces between the plates.Close spacing and the presence of the corrugations result in high coefficients on both sides several times those of shell-and tube equipment and fouling factors are low.he accessibility of the heat exchange surface for cleaning makes them particularly suitable for fouling services and where a high degree of sanitation is required as in food and pharmaceutical processing.Operating pressures and temperatures are limited by the natures of the available gasketing materials with usual maxima of 300 psig and 400 F.Since plate-and-frame exchangers are made by comparatively few concerns most process design information about them is proprietary but may be made available to serious engineers.Friction factors and heat transfer coefficients vary with the plate spacing and the kinds of corrugations.Pumping costs per unit of heat transfer are said to be lower than for shell-and-tube equipment.1n stainless steel construction the plate-and-frame construction cot is 50%-70% that of the shell-and-tube.Spiral Heat Exchangers In spiral heat exchangers the hot fluid enters at the center of the spiral element and flows to the periphery; flow of the cold liquid is countercurrent entering at the periphery and leaving at the center.Heat transfer coefficients are high on both sides and there is no correction to the log mean temperature difference because of the true countercurrentaction. These factors may lead to surface requirements 20% or so less than those of shell-and-tube exchangers. Spiral types generally may be superior with highly viscous fluids at moderate pressures.Compact (Plate-Fin) Exchangers Compact exchangers are used primarily for gas service.Typically they have surfaces of the order of 1200 m2 /m3 corrugation height 3.8-11.8 mm corrugation thickness 0.2-0.6 mm and fin density 230-700 fins/m.The large extended surface permits about four times the heat transfer rate per unit volume that can be achieved with shell-and-tube construction.Units have been designed for pressiIres up to 80 atm or so.The close spacings militate against fouling service.Commercially compact exchangers are used in cryogenic services and also for heat recovery at high temperatures in connection with gas turbines.For mobile units as in motor vehicles compact exchangers have the great merits of compactness and light weight.Any kind of arrangement of cross and countercurrent flows is feasibleand three or more different streams can be accommodated in the same equipment.Pressure drop heat transfer relations and other aspects of design are well documented.Air Coolers In such equipment the process fluid flows through finned tubes and cooling air is blown across them with fans. The economics of application of air coolers favors services that allow 25-40 1 temperature difference between ambient air and process outlet.In the range above 10 Mbtu/l air coolers can be economically compettve with watercoolers when water of adequate quality is available in su Hicient amountDouble-Pipe Exchangers This kind of exchanger conssts of a central pipe supported withn a larger one by packng glands. The straight length is limited to a maximum of about 20 ft;otherwise the center pipe wi1l sag and cause poor distribution in the annulus.It is customary to operate with the high pressure high temperature high density and corrosive fluid in the inner pipe and the less demanding one in the annulus. The inner surface can be provide with scrapers as in dewaxing of oils or crystallization from solutions.External longitudinal fins in the annular space can be used to improve heat transfer with gases or viscous fluids.When greater heat transfer surfaces are needed several double-pipes can be stacked in any combination of series or parallel.Double-pipe exchangers have largely lost out to shell-and-tube units in recent years.They may be worth considering in these situations:1. When the shell-side coefficient is less than half that of the tube side;the annular side coeHicient can be made comparable to the tube side.2. Temperature crosses that require multishell shell-and-tube units can be avoided by the inherent true countercurrent flow in double pipes.3. High pressures can be accommodated more economically in the annulus than they can in a larger diameter shell.4. At duties requiring only 100200 sqft of surface the double-pipe may be more economical even in comparison with off-the-shell unts.Shell-and-Tube Exchangers This type of exchangers will be discussed in the following section.(Selected from: Stanley M.WalasChemical Process Equiment Butterworth Publishers 1988.)Words and Expressions1.passage n.通道,通过2.versatile a.多用途的,通用的3.proprietary a.专利的,私有的4.corrugate v.成波纹状,起波纹;corrugation n5.groove n.沟,槽6.coefficient n.系数7.gasket n.密封垫片8.foul v.弄脏,堵塞;fouling factor 污垢系数9.sanitation n.卫生10.pharmaceutical a.制药的;药物的11.countercurrent n. ; a.逆流12.fin n.翅片;v.装翅片13.militate v.妨碍,起作用14.cryogenic a.冷冻的,低温的15.recovery n.恢复,回收,再生16.gland n.填料盖,密封套17.sag v.下垂,下沉18.annulus n.环状空间; annular a环形的.19.dewax v.脱蜡20.crystallization n.结晶,结晶体21.stack n.堆积,烟囱22.inherent .内在的,固有的23.accommodate v.调节,适度,容纳Unit 19 换热器的种类换热器起初是为了在热流和冷流中传热。对两种冷热流体一般有单独的通道,一般是连续性操作。最通用的换热器是壳管式换热器。但是不同种类板式和其他形式是有价值的和经济竞争能力。虽然一些其他形式也被讨论,但是接下来大部分都在讨论壳管式的。起初是因为它们的重要性也是应为他们在文献中由较完整的记载。因袭它们可以以一种适当过程的准确标准被设计。其他类型的基本上市带有专利性的,并且多数必须有他们的制造厂来进行工艺设计。板框式换热器 板框式换热器是在一个结构上压紧波纹板的装配体。围在边缘的够槽中密封垫片含有液体,并且控制板间液体的流入与流出空间。紧密的缝隙和波纹的板框换热器,在两侧的上部达到了管壳式换热器的几倍,而且板框式换热器的污垢系数较小。换热表面对于清扫的容易性德尔板框式换热器特别适用于污垢设备,也适用于卫生要求较高的行业,比如制药和食品工业,受到可能的垫圈式的密封材料性能的影响,一般最高压力值为300 psig,最高温度为400 .。由于较少气液制造板框式换热器,大多数关于板框式换热器的工艺设计资料到有专利性,但也许提供给负责的工程师。摩擦饮食和热传递系数碎着班的空间和波纹的种类变化。泵花费的每个热传递单元比壳管式设备低。用纯钢制造板框式换热器的费用是管壳式的5070%。螺旋型换热器 在螺旋形换热设备中,热流进入螺旋单元的中心,并且流到边缘。冷流体是逆流的。在边缘进入并在中心位置流出。在两边热传递系数较高。由于真正的逆流形式没有原来形式的温差,这些因素可能导致表面要求20%或更小的壳管式换热器。螺线形式对于中等压力的高粘性流体比较适合。翘片式换热器 翘片式换热器首先被应用在油气设备中。典型的翘片式换热器在单位体积上有1200平方米的表面积,翘片高度3.811.8 mm,翘片的厚度是0. 20. 6 mm,片的密度是230700片每米。在单位体积上翘片式换热器是壳管式换热器的4倍。翘片式换热器的操作压力设计为80atm。因为翘片式换热器之间的间距小,所以不适合易堵塞的设备。从商业上说,翘片式换热器适用于低温设备,也是用于与汽轮机相关的高温恢复设备。对于动力设备来说,比如在有发动机的交通工具中,翘片式换热器有结构紧凑和质量轻的优点。错流和逆流的任何排列形式都是可行的,并且在同一设备中可以安排三种或三种以上的流束,压力下降、热交换关系的设计其他方面被很好的记载。空气冷却器 这种设备是指由流体流过翘片式的管道,并且有风扇冷却的空气通过管道。考虑空气冷却器的经济性,可以允许流体与周围空气和出口的温差为2540 。荡船热效率超过每小时1千万英热时单位时,空气冷却器与水满足要求且供应量充足时,与水冷在经济上不分上下。 套管式换热器 套管式换热器是由一个尺寸比较大的和中间一个尺寸比较小的中央管通过塑料密封套连接而成。直线长度被限制在20 ft,否则中心管将下沉并且使环面的分配空间较小。一般情况,高温、高压、高密度和腐蚀性的液体放在内管上,较小要求的液体被放在外侧管子上。当在处理石油脱蜡和液体结晶时,内表面上应该提供刮刀。在环状的空间上,轴向翘片可以改善气体和粘性流体的热交换效率。假如应用较大的热交换表面。套管可以排布堆积起来,也可以应用平行方式。这些套管式换热器已经逐渐被管壳式换热器所取代。在以下情况下,是值得考虑的。(1) 当壳侧系数比管侧系数一样小时,这时壳侧系数可以与管侧相比了(2) 我们可以在套管式换热器中采用真正意义上的逆流来代替,因为温度较高需要多个套管单元。(3) 在与大直径壳体相比,我们的环装空间是使用较高压力来满足经济性能(4) 而与开放式壳体换热器相比,当我们的换热器表面仅仅是100 200 sqft时,我们套管式换热器有较高的经济性壳管换热器 这种换热器将在以后几章讨论。Notes 本句可译为:“其他类型基本上是带有专利性的,并且多数必须由它们的制造厂进行工艺设计”。 本句可译为:“由于较少企业制造板框式换热器,大多数关于板框式换热器的工艺设计资料是带有专利性的,但也许可以提供给负责任的工程师”。“N isavailable to M”,M可以得到N.句中的“concers”作企业,财团解释。 本句可译为:“错流和逆流的任何排列形式都是可行的,并且在同一设备中可以安排三种或多种流束”。 本句可译为:“当传热速率超过每小时1千万英热单位时,空气冷却器与水质满足要求且供应量充足时水冷却器在经济性上不相上下”。Exercises1. What type of heat exchangers is most widely used in industries?2. In what situations may the double-pipe exchangers be used?3. Using thefollowing phrases to make English sentences:(1) be available to (2) be feasible (3) be competitive with (4) militate against (5) in connection with4. Put the following phrases into Chinese:122(1) Plate-and-frame exchangers (2) spiral heat exchangers(3) plate-fin exchangers (4) air coolers(5) double-pipe exchangers (6) shell-and-tube exchangersReading Material 19Shell-and-Tube Heat ExchangersShell-and-tube exchangers are made up of a number of tubes in parallel and series through which one fluid travels and enclosed in a shell through which the other fluid is conducted. The shell side is provided with a number of baffles to promote high velocities and largely more efficient cross flow on the outsides of the tubes. The versatility and widespread use of this equipment has given rise to the development of industrywide standards of shich the most widely observed are the TEMA standards. A typical shell-and-tube exchanger is presented on Fig. 4. 3. Fig.4.3 Shell-and-tube exchanger I-Shelh; 2-Shell coveq; 3-Shell channel; 4-shell cover end flange; 5-Shell nozzle 6-Floating tuesheet; 7-Floating head; 8-Floating head flange; 9-Channel partition; 10-Stationary tubesheet; 11-Channel; 12-Channel cover; 13-Channel nozzle; 14-Tie rods and spacers; 15-Transverse baffles or supportplates; 16-Impingement baffle; 17-Vent connection; 18-Drain connection; 19-Testconnection; 20-Support saddles; 21-Lifting ring;Baffle pitch , or distance between baffles, normally is 0. 21. 0 times the inside diameter of the shell. Both the heat transfer coefficient and the pressure drop depend on the baffle pitch, so that is selection is part of the optimization of the heat exchanger. The window of segmental baffles commonly is abort 25%, but it also is a parameter in the thermal-hydraulic design of the equipment. In order to simplify external piping, exchangers mostly are built with even number of tube passes. Partitioning reduces the number of the tubes that can be accommodated in a shell of a given size. Square tube pitch in comparison with triangular pitch accommodates fewer tubes but is preferable when the shell side must be cleaned by brushing.Two shell passes are obtained with a longitudinal baffle. More than two shell passes normally are not provided in a single shell, brt a 48 arrangement is thermally equivalent to two 24 shells in series, and higher combinations is obtainable with shell-and tube exchangers, in particular: Single phase, condensation or boiling can be accommodated in either the tubes or the shell, in vertical or horizontal positions. Pressure range and pressure drop are virtually unlimited, and can be adjusted independently for the two fluids. Thermal stresses can be accommodated inexpensively. A great variety of materials of construction can be used and may be different for the shell and tubes. Extended surfaces for improved heat transfer can be used on either side. A great range of thermal capacities is obtainable. The equipment is readily dismantled for cleaning or repair.Several considerations may influence which fluid goes on the tube side or the shell side.The tube side is preferable for the fluid that has the higher pressure, or the higher temperature or is more corrosive. The tube side is less likely to leak expensive or hazardous fluids and is more easily cleaned. Both pressure drop and laminar heat transfer can be predicted more accurately for the tube side. Accordingly, when these factors are critical, the tube side should be selected for that fluid.Turbulent flow is obtained at lower Reynolds numbers on the shell side, so that the fluid with the lower mass flow preferably goes on that side. High Reynolds numbers are obtained by multipassing the tube side, but at a price.A substantial number of parameters is involved in the design of a shell-and tube heat exchanger for specified thermal and hydraulic conditions and desired economics, including: tube diameter, thickness, length, number of passes, pitch, square or triangular; size of shell, number of shell baffles, baffle type, baffle windows, baffle spacing, and so on. For even a modest sized design program, it is estimated that 40 separate logical designs may need to be made which lead to 240=1.10X1012 different paths through the logic. Since such a number is entirely too large for normal computer process, the problem must be simplified with some arbitrary decisions based on as much current practice as possible.(Selected from: Stanley M.Walas. Chemical Process EquiPment.Butterworth Publishers,1988.)Words and Expr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论