![24.1.4 圆周角.docx_第1页](http://file.renrendoc.com/FileRoot1/2020-1/20/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb1.gif)
![24.1.4 圆周角.docx_第2页](http://file.renrendoc.com/FileRoot1/2020-1/20/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb2.gif)
![24.1.4 圆周角.docx_第3页](http://file.renrendoc.com/FileRoot1/2020-1/20/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb3.gif)
![24.1.4 圆周角.docx_第4页](http://file.renrendoc.com/FileRoot1/2020-1/20/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb/6306e144-0ce3-44e3-8eb2-2b5c25b0d1eb4.gif)
全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1.4 圆周角太和县第十一中学 于桂萍教学目标 1了解圆周角的概念 2理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 3理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径4熟练掌握圆周角的定理及其推理的灵活运用与方法过程 设置情景,给出圆周角概念,探究圆周角与同弧所对圆心角的关系,运用数学分类思想给予逻辑证明,得出推论,最后运用定理及其推论解决问题情感态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望. 重难点、关键 1重点:圆周角的定理、圆周角的定理的推导及运用它们解题 2难点:运用数学分类思想证明圆周角的定理 3关键:探究圆周角的定理的存在 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题 1什么叫圆心角? 2圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角 (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题 二、探索新知问题:(见教材84页“?思考”)1、圆周角的意义.2、探究圆周角定理 分别量一下右图中弧AB所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律? 再分别量出弧AB所对的圆周角和圆心角的度数,比较一下,你有什么发现? 明确: 通过度量,我们可以发现,同弧所对的圆周角是没有变化的 通过度量,我们可以得出,同弧上的圆周角是圆心角的一半 3、 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半” (1)设圆周角ABC的一边BC是O的直径,如图所示 AOC是ABO的外角 AOC=ABO+BAO OA=OB ABO=BAO AOC=ABO ABC=AOC(2)如图,圆周角ABC的两边AB、AC在一条直径OD的两侧,那么ABC=AOC吗?请同学们独立完成这道题的说明过程 老师点评:连结BO交O于D同理AOD是ABO的外角,COD是BOC的外角,那么就有AOD=2ABO,DOC=2CBO,因此AOC=2ABC(3)如图,圆周角ABC的两边AB、AC在一条直径OD的同侧,那么ABC=AOC吗?请同学们独立完成证明 老师点评:连结OA、OC,连结BO并延长交O于D,那么AOD=2ABD,COD=2CBO,而ABC=ABD-CBO=AOD-COD=AOC 现在,我如果在画一个任意的圆周角ABC,同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的 从(1)、(2)、(3),我们可以总结归纳出圆周角定理: 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 进一步,我们还可以得到下面的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径4、(1)圆内接多边形及多边形的外接圆概念(2)圆内接四边形的性质:圆内接四边形的对角互补。 因为A = 12BOD , C= 12优角BOD,又因为BOD+优角BOD=360度所以,A+C=180度 下面,我们通过这个定理和推论来解一些题目 例2(见教材86页) 三、巩固练习 教材P86 练习1、2 四、课堂小结 本节课应掌握: 1、圆周角的概念; 2、圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都相等这条弧所对的圆心角的一半;3、半圆(或直径)所对的圆周角是直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电工承包简单合同(2篇)
- 2024-2025学年四年级语文上册第二单元6天安门广场教案1苏教版
- 浙教版数学七年级上册《2.1 有理数的加法》听评课记录
- 七年级英语上册 Module 8 Choosing presents Unit 3 Language in use说课稿 (新版)外研版
- 2024-2025学年高中物理课时分层作业2库仑定律含解析教科版选修3-1
- 2024年秋八年级语文上册第四单元16散文二篇永久的生命教学设计新人教版
- 《围城》2013版钱钟书所著的长篇
- 春季五年级班主任教学总结
- 九年级班主任下学期工作总结
- 2025年年度教导主任工作总结
- 2024-2025学年第二学期学校全面工作计划
- 《中国传统文化》课件模板(六套)
- 2023年湖南高速铁路职业技术学院高职单招(数学)试题库含答案解析
- 中考语文非连续性文本阅读10篇专项练习及答案
- GB/T 13088-2006饲料中铬的测定
- 经颅磁刺激的基础知识及临床应用参考教学课件
- 小学语文人教四年级上册第四单元群文阅读“神话故事之人物形象”PPT
- 乡村振兴汇报课件
- 红色记忆模板课件
- 丽声三叶草分级读物第四级A Friend for Little White Rabbit课件
- DBJ61_T 179-2021 房屋建筑与市政基础设施工程专业人员配备标准
评论
0/150
提交评论