衔接平面几何.doc_第1页
衔接平面几何.doc_第2页
衔接平面几何.doc_第3页
衔接平面几何.doc_第4页
衔接平面几何.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

31 相似形3.1.1平行线分线段成比例定理在解决几何问题时,我们常涉及到一些线段的长度、长度比的问题.在数学学习与研究中,我们发现平行线常能产生一些重要的长度比.图3.1-1在一张方格纸上,我们作平行线(如图3.1-1),直线交于点,另作直线交于点,不难发现我们将这个结论一般化,归纳出平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图3.1-2,有.当然,也可以得出.在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对应”线段成比例.例1 如图3.1-2, ,且求.图3.1-2解 平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.例4 在中,为的平分线,求证:.证明 过C作CE/AD,交BA延长线于E,AD平分图3.1-5由知.例4的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该角的两边之比).图3.1-6练习11如图3.1-6,下列比例式正确的是( )A B C D.2如图3.1-7,求.图3.1-73如图,在中,AD是角BAC的平分线,AB=5cm,AC=4cm,BC=7cm,求BD的长.图3.1-84如图,在中,的外角平分线交的延长线于点,求证:.图3.1-95如图,在的边AB、AC上分别取D、E两点,使BD=CE,DE延长线交BC的延长线于F.求证:.3.2 三角形321 三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.图3.2-1图3.2-2如图3.2-1 ,在三角形中,有三条边,三个角,三个顶点,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种重要线段. 三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.图3.2-3例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知 D、E、F分别为三边BC、CA、AB的中点,求证 AD、BE、CF交于一点,且都被该点分成2:1.证明 连结DE,设AD、BE交于点G,D、E分别为BC、AE的中点,则DE/AB,且,且相似比为1:2,图3.2-4.设AD、CF交于点,同理可得,则与重合, AD、BE、CF交于一点,且都被该点分成.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.(如图3.2-5)图3.2-5三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.(如图3.2-8)图3.2-8过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.练习11求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.2 (1) 若三角形ABC的面积为S,且三边长分别为,则三角形的内切圆的半径是_;(2)若直角三角形的三边长分别为(其中为斜边长),则三角形的内切圆的半径是_. 并请说明理由.3.2.2 几种特殊的三角形1、等腰三角形底边上三线(角平分线、中线、高线)合一.因而在等腰三角形ABC中,三角形的内心I、重心G、垂心H必然在一条直线上.2、在直角三角形ABC中,为直角,垂心为直角顶点A, 外心O为斜边BC的中点,内心I在三角形的内部,且内切圆的半径为(其中分别为三角形的三边BC,CA,AB的长),为什么?图3.2-13 该直角三角形的三边长满足勾股定理:.3、正三角形三条边长相等,三个角相等,且四心(内心、重心、垂心、外心)合一,该点称为正三角形的中心.练习21 直角三角形的三边长为3,4,,则_.2 等腰三角形有两个内角的和是100,则它的顶角的大小是_.3 满足下列条件的,不是直角三角形的是( )A B C D 4 已知直角三角形的周长为,斜边上的中线的长为1,求这个三角形的面积.5 证明:等腰三角形底边上任意一点到两腰的距离之和为一个常量.习题3.2A组1 已知:在中,AB=AC,为BC边上的高,则下列结论中,正确的是()A B C D2 三角形三边长分别是6、8、10,那么它最短边上的高为( )A6 B4.5 C2.4 D83 如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_.4 已知:是的三条边,那么的取值范围是_。5 若三角形的三边长分别为,且是整数,则的值是_。33圆331 直线与圆,圆与圆的位置关系设有直线和圆心为且半径为的圆,怎样判断直线和圆的位置关系?图3.3-1观察图3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离时,直线和圆相离,如圆与直线;当圆心到直线的距离时,直线和圆相切,如圆与直线;当圆心到直线的距离时,直线和圆相交,如圆与直线.图3.3-2在直线与圆相交时,设两个交点分别为A、B.若直线经过圆心,则AB为直径;若直线不经过圆心,如图3.3-2,连结圆心和弦的中点的线段垂直于这条弦.且在中,为圆的半径,为圆心到直线的距离,为弦长的一半,根据勾股定理,有.图3.3-3当直线与圆相切时,如图3.3-3,为圆的切线,可得,且在中,.如图3.3-4,为圆的切线,为圆的割线,我们可以证得,因而.图3.3-4例1 如图3.3-5,已知O的半径OB=5cm,弦AB=6cm,D是的中点,求弦BD的长度。解 连结OD,交AB于点E。是圆心,在中,OB=5cm,BE=3cm,在中,BE=3cm,DE=1cm, 设圆与圆半径分别为,它们可能有哪几种位置关系?图3.3-7观察图3.3-7,两圆的圆心距为,不难发现:当时,两圆相内切,如图(1);当时,两圆相外切,如图(2);当时,两圆相内含,如图(3);当时,两圆相交,如图(4);当时,两圆相外切,如图(5).练习 11.如图3.3-9,O的半径为17cm,弦AB=30cm,AB所对的劣弧和优弧的中点分别为D、C,求弦AC和BD的长。图3.3-92.已知四边形ABCD是O的内接梯形,AB/CD,AB=8cm,CD=6cm, O的半径等于5cm,求梯形ABCD的面积。3.如图3.3-10,O的直径AB和弦CD相交于点E,求CD的长。图3.3-104若两圆的半径分别为3和8,圆心距为13,试求两圆的公切线的长度.332 点的轨迹在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为的线段的一个端点固定,另一个端点绕这个定点旋转一周就得到一个圆,这个圆上的每一个点到定点的距离都等于;同时,到定点的距离等于的所有点都在这个圆上.这个圆就叫做到定点的距离等于定长的点的轨迹.下面,我们讨论一些常见的平面内的点的轨迹.从上面对圆的讨论,可以得出:(1) 到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹:(2) 和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:(3) 到已知角的两边距离相等的点的轨迹,是这个角的平分线.圆心的轨迹,就是到、两点距离相等的点的轨迹,即和线段两个端点距离相等的点的轨迹.答:经过、两点的圆的圆心O的轨迹是线段的垂直平分线.图3.3-11练习21画图说明满足下列条件的点的轨迹:(1) 到定点的距离等于的点的轨迹;(2) 到直线的距离等于的点的轨迹;(3) 已知直线,到、的距离相等的点的轨迹. 2画图说明,到直线的距离等于定长的点的轨迹.习题3.3A组1 已知弓形弦长为4,弓形高为1,则弓形所在圆的半径为( )A B C3 D42 在半径等于4的圆中,垂直平分半径的弦长为( )A B C D3 AB为O的直径,弦,E为垂足,若BE=6,AE=4,则CD等于( )A B C D4 如图3.3-12,在O中,E是弦AB延长线上的一点,已知OB=10cm,OE=12cm,求AB。图3.3-12B组1 如图3.3-13,已知在中,以C为圆心,CA为半径的圆交斜边于D,求AD。图3.3-13图3.3-142 如图3.3-14,在直径为100mm的半圆铁片上切去一块高为20mm的弓形铁片,求弓形的弦AB的长。3 如图3.3-15,内接于O,D为的中点,于E。求证:AD平分。图3.3-154 如图3.3-16,C、D是的三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD。图3.3-165 已知线段.画出到点的距离等于的点的轨迹,再画出到点的距离等于的点的轨迹,指出到点的距离等于,且到点的距离等于的点,这样的点有几个?3.3 圆练习11取AB中点M,连CM,MD,则,且C,O,M,D共线,.2O到AB,CD的距离分别为3cm,4cm,梯形的高为1cm或7cm,梯形的面积为7或49.3. 半径为3cm,OE=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论