全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简易方程教材分析本单元的教学内容主要有:用字母表示数和解简易方程。其中,在解简易方程部分又包括以下四个方面内容:方程的意义、等式的性质、解方程、实际问题与方程。具体结构图如下:这些内容是在学生具备一定的算术知识(如整数、小数的四则运算及其应用),已初步接触了一点代数知识(如用字母表示运算定律,用“”“”或“”表示数)的基础上进行学习的。一般地说,在小学教学简易方程有以下几方面的意义:一是有助于培养学生的抽象概括能力,发展学生思维的灵活性。因为对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具从列出算式解发展到列出方程求解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。二是有助于巩固和加深理解所学的算术知识。通过用字母表示所学过的数量关系、运算定律以及一些图形的周长、面积计算公式,可以使学生加深对这些知识的理解。同时,由于用字母表示比用文字表述更简明易记,所以便于学生巩固所学知识。三是有利于加强中小学数学知识的衔接。让学生初步接触一点代数知识,能使学生摆脱算术思维方法中的某些局限性(逆向思考,未知数不参加运算,思维的步骤增加),为进一步学习代数知识做好认识的准备和铺垫。一、用字母表示数本部分教学内容充分体现了学生的认知规律:从具体到一般(抽象概括)、再到具体(代入应用)的正、反两个思维过程,最后进行拓展应用,为数学归纳法的学习进行了很好的前期渗透。教学例1反映的两个数量之间的加减关系,更加充分体现了“具体一般具体”的学生认知过程。同时,由于这是学生正式学习简易方程的第一个例题,本题还着重渗透了学生学习代数知识所必备的抽象概括能力、函数思想及代入求值的解题方法。教学例2反映的是两个数量之间的乘除关系,重点突出了从具体到一般的抽象概括能力,并使学生体会到了符号化的简洁性。进一步体现了数学归纳法的学习过程,同时强调了代数式的表示方法及书写习惯。教学例3是通过含有字母的代数式表示运算定律和计算公式,让学生体会到了代数式可以表示两个量之间的任意数量关系,更加体会到了代数式的优越性(或是符号化的优越性),同时为学生渗透了代入法求值的解题方法。前面三个例题,从两个量之间的数量关系入手,为学生学习用字母表示数、建立符号意识打下了基础。例4、例5则从多个量之间的数量关系开始,为学生的符号化意识、代数思想进行拓展,让学生体会到了代数式的功能性作用,为学生学习用方程解决实际问题奠定了基础。二、方程的意义通过动手操作、直观体会、对比感知等手段,使学生建立方程的概念,感知方程的多样性,能判断一个式子是否为方程。在这个过程中,一定要突出含有未知数、等式这两个必须满足的客观条件,从而进一步加深学生对方程的认识。三、等式的性质长期以来,在小学教学简易方程,方程变形的依据总是加减运算的关系或乘除运算之间的关系。这实际上是用算术的思路来求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理,然后重新学习依据等式的基本性质或方程的同解原理解方程,而且小学的思路及其算法掌握的越牢固,对中学代数起步教学的负迁移就越明显。现在,根据义务教育数学课程标准(2011年版)的要求,从小学起就引入等式的基本性质,并以此为基础导入解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。本部分内容旨在通过两幅“天平游戏”的主题图向学生分别揭示等式的基本性质。因此,在进行这部分内容教学时,教师一定要让学生通过动手实验、双向观察、细致分析,从而使学生的思维从天平联想到等式,从同时增加、减少相同质量的砝码联想到同时加上或减去同一个数,从物体质量同时成倍扩大或缩小整数倍联想到同时乘或除以同一个不为0的数。通过这样一个个联系的纽带,水到渠成地总结出等式的基本性质。四、解方程如果说前面三部分内容只是前奏,是为学生更好学习方程奠基,那么这部分内容就是学生学习方程的重点。教材首先向学生揭示的就是方程的解、解方程这两个学生容易混淆的概念,然后用了5个不同的例题呈现出对五种不同类型方程的解答,从中不难发现解答方法是一致的:即运用等式的基本性质进行解答,并且这是教材中强调的小学生解方程的唯一方法。同时,通过这5个例题也强调了用代入法的方式来进行验算。教学例1强调用等式的加减性质解答形如的方程,并运用转化思想解答形如的方程,同时建立方程的解与解方程两个概念;教学例2强调用等式的乘除性质解答形如的方程,同时要让学生尝试解答形如的方程;教学例3强调解答形如的方程,但更重要的是在于让学生通过转化的思想,联系例3的解答,尝试解答形如的方程;教学例4、例5是转化思想、运用整体意识解答具有较复杂数量关系的方程。五、实际问题与方程本部分内容属于方程的应用部分,也是学生学习方程的难点所在。通过本部分的学习培养学生运用数学知识解决实际问题的能力。教学例1通过简单的数量关系教学形如的应用,同时告诉学生通过观察、运用,体会到列方程解题的基本方法和步骤,特别是要强调等量关系式对于列方程解题的重要性;教学例2通过对形如的应用,使学生进一步体会到列方程解题的基本方法,更加体会到列方程解题的优越性。通过例1、例2的学习,引导学生总结列方程解题的三个基本步骤,突出等量关系式对于列方程的重要性。后面三个例题都是列方程解答含有稍复杂数量关系的实际问题。教学例3解决的是运用形如这样的方程解决实际问题,在这部分可以鼓励学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建师范大学协和学院《统计学》2021-2022学年第一学期期末试卷
- 福建师范大学《中国传统音乐概论》2022-2023学年第一学期期末试卷
- 福建师范大学《教育史》2023-2024学年第一学期期末试卷
- 福建师范大学《高观点下的中学数学》2023-2024学年第一学期期末试卷
- 2024届上海市七宝高中高三第一次调研测数学试题
- 景阳冈课件教材帮
- 《机电一体化技术基础》 教案 卓民 第1-3章 机电一体化概述-传感与检测技术
- 2024年北京客运车驾驶员培训资料
- 2024年海口客运资格证紧急救护试题和答案
- 2024年山南从业资格证模拟考试题库
- 新质生产力:复合概念、发展基础与系统创新路径
- 2024年个人车位租赁合同参考范文(三篇)
- 江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)
- 2024年山东省济南市中考数学真题(含答案)
- 二手门市销售合同范本
- 2024年安全员A证试题库(附答案)
- 浙江省温州市苍南县2023-2024学年八年级上学期期中考试英语试题
- 部编版五年级上册《交流平台·初试身手·习作例文》课件
- 新苏教版六年级上册科学全册知识点
- 2.2生命活动的主要承担者-蛋白质(公开课)
- 2024-2030年中国汽摩配行业运营态势及重点企业发展分析报告
评论
0/150
提交评论