




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考等腰三角形常用辅助线 专题练习(含答案)1.如图:已知,点D、E在三角形ABC的边BC上, AB=AC,AD=AE,求证:BD=CE。 证明:作AFBC,垂足为F, 则AFDE。 AB=AC,AD=AE又AFBC ,AFDE, BF=CF,DF=EF (等腰三角形底边上的高与 底边上的中线互相重合)。 BD=CE.2.如图,在三角形ABC中,AB=AC,AF平行BC于F, D是AC边上任意一点,延长BA到E,使AE=AD, 连接 DE,试判断直线AF与DE的位置关系,并说 明理由解:AFDE理由: 延长ED交BC于G, AB=AC,AE=AD B=C,E=ADE B+E=C+ADE ADE=CDG B+E=C+CDG B+E=DGC,C+CDG=BGE, BGE+CGD=180 BGE=CGD=90 EGBC AFBC AFDE解法2:过A点作ABC底边上的高,再用BAC=D+AED=2ADE, 即CAG=AED,证明AGDE 利用AFBC证明AFDE3.如图,ABC中,BA=BC,点D是AB延长线上一点, DFAC交BC于E,求证:DBE是等腰三角形。证明:在ABC中, BA=BC, A=C, DFAC, C+FEC=90, A+D=90, FEC=D FEC=BED, BED=D, BD=BE, 即DBE是等腰三角形4. 如图,ABC中,AB=AC,E在AC上,且AD=AE,DE 的延长线与BC相交于F。求证:DFBC.证明:AB=AC, B=C, 又AD=AE, D=AED,B+D=C+AED, B+D=C+CEF,EFC=BFE=180 1/2 = 90, DFBC;若把“AD =AE”与结论“DFBC”互换,结论也成立。若把条件“AB=AC”与结论“DFBC”互换,结论依然成立。5. 如图,AB=AE,BC=ED, B=E,AMCD, A 求证:CM=MD.证明: 连接AC,ADAB=AE,B=E,BC=ED ABCAED(SAS)AC=ADAMCD AMC=AMD=90 AM=AM (公共边) RTACMRTADM (HL)CM=DM6.如图,已知AD是ABC的中线,BE交AC于F, 且AE=EF,求证:BF=AC证明:过B点做AC的平行线,交AD的延长线于G点 AD为中线,BD=CD BG平行于AC, FGB=CAF, DBG=ACD 3、日 木 女 王 日 口 4、音 门 日 禾 女 山在AFE和GFB中,FGB=CAF,GFB=AFE AFEGFB 杨树高高的高高的杨树FGB=FAEAE=EF,FAE=AFEBFG=G GFB为等腰三角形,且BF=BG 在ADC和GBD中 DBG=ACD,BD=CD, BDG=CDA ADCGBD BG=ACBF=AC你是学生,我也是学生。7.已知:如图,ABC(ABAC)中,D、E在BC上, 且DE=EC,过D点作DFBA,交AE于点F,DF=AC, 求证:AE平分BAC证明:延长AE,过D作DMAC交AE延长线于M M=1,C=2 在DEM与CEA中 M=1,C=2, DE=CE DEMCEA DM=CA 又DF=CA,DM=DF,M=3 ABFD,3=4,4=1 AE平分BAC雨点儿从云彩里飘落下来。 小明从屋里跑出来。8. 已知:如图,ABC中,AB=AC,在AB上取一点D,在 延长线上取一点E,连接DE交BC于点F,若F是DE中点。求 证:BD=CE证明:过D作DFAC交BC于F, DFAC(已知), DFC=FCE,DFB=ACB(平行线的性质) AB=AC(已知), B=ACB(等边对等角), B=DFB(等量代换), BD=DF(等角对等边), BD=CE(已知), DF=CE(等量代换), DFC=FCE, DGF=CGE(已证),DFGECG(AAS),DG=GE(对应边相等)9. 已知:如图,在ABC中,AB=AC=CE,B是AD上一点, BECB 交CD于E,ACDC, 求证:BE=1/2BC证明:过点A作AFBC交BC于点FABC是等腰三角形,AB=AC,ABF=ACF(1) AF是BC上的垂直平分线,AFBC,BF=CF=BC/2(2) BEBC,BE/AF DBE=BAF(3) CBE=90 DBE+ABF=90=ACF+ECB(4) 由(1)和(4)知道:DBE=ECB(5) 由(3)和(5)知道:BAF=ECB 又AB=CE,BFA=EBC=90 RTBFARTEBC(角角边) BF=EB(6) 由(2)和(6)知道:BE=BC/210.如图,AD为ABC的角平分线,M为BC的中点,MEDA交 BA延长线于E, 求证:BE=CF=1/2(AB+AC)证明: (1)延长EM,使EM=MG,连接CG点M是BC的中点 ,BM=CM BME=CMG BMECMG(SAS)BE=CG,E=GAD平分BAC ,BAD=CAD MEDA,BAD=E,CAD=AFE E=AFE, AE=AF AFE=CFG , G=CFG CF=CG , BE=CG, BE=CF(2)BE=AB+AE,2BE=2AB+2AECF=BE,AC=CF+AF,AE=AF2BE=2CF=AB+(AB+AE)+AE =AB+BE+AE=AB+(CF+AE) AC=AF+CF 2BE=AB+AC BE=CF=1/2(AB+AC)美丽的鲜花 美丽的春天 美丽的孔雀11.如图,已知ABC中,ADBC,ABC=2C. 试说明AB+BD=CD的理由。 证明: 在DC上截取DE=BD,连接AE ADBC,ADB=ADE=90 AD=AD RTADBRTADE(SAS) AB=AE ,ABC=AEBAEB=C+EAC ABC=2C(已知) EAC=CAE=CE ,AB=CE CD=CE+DE ,AB+BD=CD一面红旗 一个朋友 一对朋友 一条木船 一条小河12.已知:如图,AD是ABC的角平分线,且AC=AB+BD. 求证:B=2C. 口字旁:叶、呢、吧、呀、吓、叫、吹、吃、听、唱证明:在AC上作AEAB,连结DE AC=AB+BDAE+CE ,BDCE AD是角平分线 ,BADEAD 又AB=AE,AD=AD ABDEAD BAED,BDDECEEDC=C,AED2C即:B2C言字旁:认、语、诗、谁、请、许、说、话13.如图所示,已知在ABC中AD是A的平分线,且B=2C. 求证:AC=AB+BD.证明:延长AB到E,使AC=AE,连接DEAD是BAC的角平分线 BAD=DAC(角平分线的定义) 公共边AD=AD AC=AE BAD=DAC ACDAED (SAS) ACB=DEA(全等三角形形的对角相等) BDE+DEB=CBA CBA=2ACB ACB=DEA BDE=DEA BD=BE(等角对等边) AB+BE=AE,AC=AE,BD=BEAB+BD=AC14.如图,点E是等边ABC内一点,且EA=EB, ABC外一点D满 足BD=AC,且BE平分BDE。 求BDE的度数 解:连接CE, AC=BC,AE=BE,CE为公共边, BCEACE, BCE=ACE=30 又BD=AC=BC,DBE=CBE,BE为公共边, BDEBCE, BDE=BCE=306、量词填空。15.如图,已知在ABC中,AB=BC=CA,E是AD上一点,并且 EB=BD=DE. 求证:BD+DC=AD. A提示:证明ABEBCD即可 E B C16.已知:如图,ABC中,C=90,CMAB于M,AT平分 BAC交CM于D,交BC于T,过D作DEAB交BC于E, 求证:CT=BE证明1: 作DFBC交AB于F,则:AFD=B=ACD, AT为BAC的角平分线,AD为公共边 AFDACD,AF=AC 连接TF AF=AC, AT为BAC的角平分线,AT为公共边 ACTAFT, TFAF,TFCM DFCTBE,TFCD,DEBF 四边形CTFD和四边形BEDF都是平行四边形 CT=DF=BE通过把句子写完整的训练,让学生明白什么是完整的一句话,以达到让他们写一句完
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年责任督学服务质量提升计划
- 幼儿园安全教育与应急培训计划
- 精准医疗策略研究-全面剖析
- 刑事辩护律师心得体会
- 城市历史文化保护与传承-全面剖析
- 部编版六年级语文教学活动计划
- 水产苗种品牌战略研究-全面剖析
- 石材市场供需分析-全面剖析
- 3D打印与材料创新-全面剖析
- 生物墨水打印细胞存活率优化-全面剖析
- MCGS网络版访问指导书
- 肝内胆管细胞癌的影像表现
- 隐患排查整改台账
- 卧床患者四肢关节功能锻炼(优化版)课件
- 2023年部编版小学二年级下语文第八单元《世界之初》大单元教学设计
- 物业标识标牌设计方案
- 基于arduino的无线传感器网络室内定位方法的研究毕业论文
- 2023压力容器设计审核人员考试题库-2
- 心肺复苏及AED的使用
- 新大交通管理与控制课件05交通运行管理
- 部编版语文九年级(下)读读写写看拼音写汉字
评论
0/150
提交评论