【能力培优】八年级数学上册 12.4 分式方程专题训练 (新版)冀教版.doc_第1页
【能力培优】八年级数学上册 12.4 分式方程专题训练 (新版)冀教版.doc_第2页
【能力培优】八年级数学上册 12.4 分式方程专题训练 (新版)冀教版.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.4 分式方程专题一 根据分式方程的根确定字母的值或取值范围1.关于x的分式方程的解为正数,则m的取值范围是 .2.若关于x的方程无解,求a的值.专题二 特殊分式方程的特殊解法3.解方程:.4. 阅读下列材料:关于x的方程的解是(表示未知数x的两个实数解,下同);(1)的解是(即:的解是);的解是;的解是.请观察上述方程与解的特征,比较关于x的方程(m0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解.请用这个结论解关于x的方程:.状元笔记【知识要点】1.分式方程的定义分母中含有未知数的方程叫做分式方程.2.解分式方程的一般步骤(1)去分母,把分式方程转化为整式方程;(2)解这个整式方程;(3)验根,并写出原方程的解.【温馨提示】1.解分式方程的基本思想是将分式方程转化为整式方程.2.解分式方程一定要注意验根.3.分式方程有解的条件是:化简得到的整式方程有解;整式方程的解使分式方程的分母的值不为0 .【方法技巧】1.判断一个方程是否是分式,并不是看分式方程中是否有分母,而是看分母中是否含有未知数.2.验根的方法:把整式方程的根代入最简公分母,看结果是否为0(即是否符合“分母不为0”的限制),如果分母不为0,则被验的根就是分式方程的解,如果使分母为0,则这个根就是增根,必须舍去.参考答案1. m2且m3 解析:去分母,原方程可化简为,因为方程的解为正数,所以,得m2;又,所以x1,即m21,得m3.综上,m2且m3.2.解:把分式方程转化为整式方程,得x(x-a)-3(x-1)=x(x-1),整理得(a+2)x=3,分情况讨论:(1)当a+2=0时,方程(a+2)x=3无解,即当a=-2时,原分式方程无解;(2)当a+20时,方程(a+2)x=3有解,解这个分式方程,得.若=0,则是增根,此时不存在这样的a值.若=1,则是增根,此时a=1.综上所述,当a=-2或a=1时,原分式方程无解.3.解析:可用裂项法,由于方程中每一个分式的分母加1都等于它的分子,根据这样一个特点,可以把分子分裂成两项,然后分别用它的分母去除,消去分子中的未知数,再分组通分,将分子化1.解:原方程可化为,即 .移项得,通分得,所以,解得 x=5.经检验x=5是原方程的解.4.解:(1).验证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论