已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲函数的应用考情解读1.函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以选择、填空题的形式出现.2.函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题1函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)0的实数x叫做函数f(x)的零点(2)函数的零点与方程根的关系函数f(x)f(x)g(x)的零点就是方程f(x)g(x)的根,即函数yf(x)的图象与函数yg(x)的图象交点的横坐标(3)零点存在性定理如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,且有f(a)f(b)f()0,则方程f(x)0的根的个数为_(2)(2014辽宁)已知f(x)为偶函数,当x0时,f(x)则不等式f(x1)的解集为()a,b,c,d,思维启迪(1)根据零点存在性原理,进行判断;(2)画出函数图象,利用数形结合思想解决答案(1)2(2)a解析(1)由于函数f(x)是定义在(,0)(0,)上的奇函数,且f()f()0,故f()0,由零点存在性定理知,存在c(,),使得f(c)0,即函数f(x)在(0,)有唯一零点,由奇函数图象的特点知,函数f(x)在(,0)也有一个零点,故方程f(x)0的根的个数为2.(2)先画出y轴右边的图象,如图所示f(x)是偶函数,图象关于y轴对称,可画出y轴左边的图象,再画直线y.设与曲线交于点a,b,c,d,先分别求出a,b两点的横坐标令cos x,x0,x,x.令2x1,x,xa,xb.根据对称性可知直线y与曲线另外两个交点的横坐标为xc,xd.f(x1),则在直线y上及其下方的图象满足,x1或x1,x或x.思维升华函数零点(即方程的根)的确定问题,常见的有函数零点值大致存在区间的确定;零点个数的确定;两函数图象交点的横坐标或有几个交点的确定解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解(1)已知函数f(x)()xcos x,则f(x)在0,2上的零点个数是()a1 b2c3 d4(2)已知a是函数f(x)2xlogx的零点,若0x00cf(x0)0 df(x0)的符号不确定答案(1)c(2)c解析(1)f(x)在0,2上的零点个数就是函数y()x和ycos x的图象在0,2上的交点个数,而函数y()x和ycos x的图象在0,2上的交点有3个,故选c.(2)f(x)2xlogx在(0,)上是增函数,又a是函数f(x)2xlogx的零点,即f(a)0,当0x0a时,f(x0)0.热点二函数的零点与参数的范围例2对任意实数a,b定义运算“”:ab设f(x)(x21)(4x),若函数yf(x)k的图象与x轴恰有三个不同交点,则k的取值范围是()a(2,1) b0,1c2,0) d2,1)思维启迪先确定函数f(x)的解析式,再利用数形结合思想求k的范围答案d解析解不等式:x21(4x)1,得:x2或x3,所以,f(x)函数yf(x)k的图象与x轴恰有三个不同交点转化为函数yf(x)的图象和直线yk恰有三个不同交点如图,所以1k2,故2k1.思维升华已知函数的零点个数求解参数范围,可以利用数形结合思想转为函数图象交点个数;也可以利用函数方程思想,构造关于参数的方程或不等式进行求解定义在r上的函数f(x)ax3bx2cx(a0)的单调增区间为(1,1),若方程3a(f(x)22bf(x)c0恰有6个不同的实根,则实数a的取值范围是_答案a解析函数f(x)ax3bx2cx(a0)的单调增区间为(1,1),1和1是f(x)0的根,f(x)3ax22bxc,b0,c3a,f(x)ax33ax,3a(f(x)22bf(x)c0,3a(f(x)23a0,f2(x)1,f(x)1,即,a.热点三函数的实际应用问题例3省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)|a|2a,x0,24,其中a是与气象有关的参数,且a0,若用每天f(x)的最大值为当天的综合放射性污染指数,并记作m(a)(1)令t,x0,24,求t的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?思维启迪(1)分x0和x0两种情况,当x0时变形使用基本不等式求解(2)利用换元法把函数f(x)转化成g(t)|ta|2a,再把函数g(t)写成分段函数后求m(a)解(1)当x0时,t0;当0x24时,x2(当x1时取等号),t(0,即t的取值范围是0,(2)当a0,时,记g(t)|ta|2a,则g(t)g(t)在0,a上单调递减,在(a,上单调递增,且g(0)3a,g()a,g(0)g()2(a)故m(a)即m(a)当0a时,m(a)a2显然成立;由得a,当且仅当0a时,m(a)2.故当0a时不超标,当a时超标思维升华(1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去(2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为r(x)万元,且r(x)(1)写出年利润w(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润年销售收入年总成本)解(1)当010时,wxr(x)(102.7x)982.7x.w(2)当00;当x(9,10)时,w10时,w9898238,当且仅当2.7x,即x时,w38,故当x时,w取最大值38.综合知:当x9时,w取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大1函数与方程(1)函数f(x)有零点方程f(x)0有根函数f(x)的图象与x轴有交点(2)函数f(x)的零点存在性定理如果函数f(x)在区间a,b上的图象是连续不断的曲线,并且有f(a)f(b)0,那么,函数f(x)在区间(a,b)内有零点,即存在c(a,b),使f(c)0.如果函数f(x)在区间a,b上的图象是连续不断的曲线,并且函数f(x)在区间a,b上是一个单调函数,那么当f(a)f(b)0,那么,函数f(x)在区间(a,b)内不一定没有零点2函数综合题的求解往往应用多种知识和技能因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决3应用函数模型解决实际问题的一般程序与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.真题感悟1(2014重庆)已知函数f(x)且g(x)f(x)mxm在(1,1内有且仅有两个不同的零点,则实数m的取值范围是()a.b.c.d.答案a解析作出函数f(x)的图象如图所示,其中a(1,1),b(0,2)因为直线ymxmm(x1)恒过定点c(1,0),故当直线ym(x1)在ac位置时,m,可知当直线ym(x1)在x轴和ac之间运动时两图象有两个不同的交点(直线ym(x1)可与ac重合但不能与x轴重合),此时0m,g(x)有两个不同的零点当直线ym(x1)过点b时,m2;当直线ym(x1)与曲线f(x)相切时,联立得mx2(2m3)xm20,由(2m3)24m(m2)0,解得m,可知当ym(x1)在切线和bc之间运动时两图象有两个不同的交点(直线ym(x1)可与bc重合但不能与切线重合),此时m2,g(x)有两个不同的零点综上,m的取值范围为(,2(0,故选a.2(2014北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系pat2btc(a、b、c是常数),如图记录了三次实验的数据根据上述函数模型和实验数据,可以得到最佳加工时间为()a3.50分钟 b3.75分钟c4.00分钟 d4.25分钟答案b解析根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得消去c化简得解得所以p0.2t21.5t2.0(t2t)2(t)2,所以当t3.75时,p取得最大值,即最佳加工时间为3.75分钟押题精练1已知函数f(x)则函数yff(x)1的零点有_个答案4解析当f(x)0时,x1或x1,故ff(x)10时,f(x)11或1.当f(x)11,即f(x)2时,解得x3或x;当f(x)11,即f(x)0时,解得x1或x1.故函数yff(x)1有四个不同的零点2函数f(x)xexa有两个零点,则实数a的取值范围是_答案(,0)解析令f(x)(x1)ex0,得x1,则当x(,1)时,f(x)0,f(x)在(,1)上单调递减,在(1,)上单调递增,要使f(x)有两个零点,则极小值f(1)0,即e1a,又x时,f(x)0,则a0,故1828,当且仅当x5时,年平均利润最大,最大值为8万元(推荐时间:60分钟)一、选择题1函数f(x)log2x的零点所在的区间为()a(0,) b(,1)c(1,2) d(2,3)答案c解析函数f(x)的定义域为(0,),且函数f(x)在(0,)上为增函数f()log21230,f(1)log21010,f(3)log2310,即f(1)f(2)0,函数f(x)log2x的零点在区间(1,2)内2函数f(x)ln,下列区间中,可能存在零点的是()a(1,2) b(2,3)c(3,4) d(1,2)与(2,3)答案b解析f(x)lnln(x1),函数f(x)的定义域为(1,),且为递减函数,当1x2时,ln(x1)0,所以f(x)0,故函数在(1,2)上没有零点;f(2)ln 110,f(3)ln 2,因为22.828,所以e,故ln eln ,即1ln 8,所以2ln 8,即f(3)0,f(4)ln 3ln 30时,f(x)x2x(x)2,所以要使函数f(x)m有三个不同的零点,则m0,即m的取值范围为(,0)5(2013江西)如图,半径为1的半圆o与等边三角形abc夹在两平行线l1,l2之间,ll1,l与半圆相交于f、g两点,与三角形abc两边相交于e、d两点设弧的长为x(0x),yebbccd,若l从l1平行移动到l2,则函数yf(x)的图象大致是()答案d解析如图所示,连接of,og,过点o作omfg,过点a作ahbc,交de于点n.因为弧的长度为x,所以fogx,则anomcos ,所以cos ,则aecos ,ebcos .yebbccdcos cos 2(0x)6已知定义在r上的函数f(x)满足:f(x)且f(x2)f(x),g(x),则方程f(x)g(x)在区间5,1上的所有实根之和为()a5 b6c7 d8答案c解析由题意知g(x)2,函数f(x)的周期为2,则函数f(x),g(x)在区间5,1上的图象如图所示:由图形可知函数f(x),g(x)在区间5,1上的交点为a,b,c,易知点b的横坐标为3,若设c的横坐标为t(0t0时,由f(x)ln x0,得x1.因为函数f(x)有两个不同的零点,则当x0时,函数f(x)2xa有一个零点,令f(x)0得a2x,因为02x201,所以0a1,所以实数a的取值范围是0a1.8(2014课标全国)设函数f(x)则使得f(x)2成立的x的取值范围是_答案(,8解析当x1时,x10,ex1e012,当x1解析函数f(x)有三个零点等价于方程m|x|有且仅有三个实根m|x|x|(x2),作函数y|x|(x2)的图象,如图所示,由图象可知m应满足:01.10我们把形如y(a0,b0)的函数因其图象类似于汉字中的“囧”字,故生动地称为“囧函数”,若当a1,b1时的“囧函数”与函数ylg|x|的交点个数为n,则n_.答案4解析由题意知,当a1,b1时,y在同一坐标系中画出“囧函数”与函数ylg|x|的图象如图所示,易知它们有4个交点三、解答题11设函数f(x)ax2bxb1(a0)(1)当a1,b2时,求函数f(x)的零点;(2)若对任意br,函数f(x)恒有两个不同零点,求实数a的取值范围解(1)当a1,b2时,f(x)x22x3,令f(x)0,得x3或x1.函数f(x)的零点为3和1.(2)依题意,f(x)ax2bxb10有两个不同实根b24a(b1)0恒成立,即对于任意br,b24ab4a0恒成立,所以有(4a)24(4a)0a2a0,所以0a1.因此实数a的取值范围是(0,1)12随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(1402a420,且a为偶数),每人每年可创利b万元据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?解设裁员x人,可获得的经济效益为y万元,则y(2ax)(b0.01bx)0.4bxx22(a70)x2ab.依题意得2ax2a,所以0x.又1402a420,即70a210.(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 齐齐哈尔大学《行政法与行政诉讼法》2022-2023学年第一学期期末试卷
- 苗种购销合同范本
- 贸易工厂合同范本
- 2024商品代理销售协议样式
- 公司简单合同范本
- 十二楼买卖合同范本
- 离婚赔偿合同范本
- 物业租赁建房合同范本
- 工厂无尘车间合同范本
- 商铺销售使用权合同范本
- 中小学师德师风建设各项制度汇编
- 2024年保安员证考试题库及答案(共260题)
- 公务员2024年国考申论真题(地市级)及参考答案
- XXXX酒店管理公司成立方案
- 民用无人机操控员执照(CAAC)考试复习重点题及答案
- 疼痛科整体规划和发展方案
- 2024年中国南水北调集团水网水务投资限公司及下属单位社会招聘高频难、易错点500题模拟试题附带答案详解
- (新版)食品生产企业食品安全员理论考试题库500题(含答案)
- 七年级语文上册第13课《纪念白求恩》公开课一等奖创新教案
- 统编版语文六年级上册第八单元大单元整体教学设计
- 教师个人业务学习笔记(41篇)
评论
0/150
提交评论