




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲函数与方程思想 数形结合思想 高考定位函数与方程的思想一般通过函数与导数 三角函数 数列 解析几何等知识进行考查 数形结合思想一般在选择题 填空题中考查 真题感悟 1 函数与方程思想的含义 1 函数的思想 是用运动和变化的观点 分析和研究数学中的数量关系 是对函数概念的本质认识 建立函数关系或构造函数 运用函数的图象和性质去分析问题 转化问题 从而使问题获得解决的思想方法 2 方程的思想 就是分析数学问题中变量间的等量关系 建立方程或方程组 或者构造方程 通过解方程或方程组 或者运用方程的性质去分析 转化问题 使问题获得解决的思想方法 2 函数与方程的思想在解题中的应用 1 函数与不等式的相互转化 对于函数y f x 当y 0时 就转化为不等式f x 0 借助于函数的图象和性质可解决有关问题 而研究函数的性质也离不开不等式 2 数列的通项与前n项和是自变量为正整数的函数 用函数的观点去处理数列问题十分重要 3 解析几何中的许多问题 需要通过解二元方程组才能解决 这都涉及二次方程与二次函数的有关理论 3 数形结合是一种数学思想方法 包含 以形助数 和 以数辅形 两个方面 其应用大致可以分为两种情形 借助形的生动和直观性来阐明数之间的联系 即以形作为手段 数为目的 比如应用函数的图象来直观地说明函数的性质 借助于数的精确性和规范严密性来阐明形的某些属性 即以数作为手段 形作为目的 如应用曲线的方程来精确地阐明曲线的几何性质 4 在运用数形结合思想分析和解决问题时 要注意三点 第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征 对数学题目中的条件和结论既分析其几何意义又分析其代数意义 第二是恰当设参 合理用参 建立关系 由数思形 以形想数 做好数形转化 第三是正确确定参数的取值范围 数学中的知识 有的本身就可以看作是数形的结合 热点一函数与方程思想的应用 微题型1 不等式问题中的函数 方程 法 例1 1 1 f x ax3 3x 1对于x 1 1 总有f x 0成立 则a 2 设f x g x 分别是定义在r上的奇函数和偶函数 当x 0时 f x g x f x g x 0 且g 3 0 则不等式f x g x 0的解集是 且g x 在区间 1 0 上单调递增 因此g x min g 1 4 从而a 4 综上a 4 2 设f x f x g x 由于f x g x 分别是定义在r上的奇函数和偶函数 得f x f x g x f x g x f x 即f x 在r上为奇函数 又当x 0时 f x f x g x f x g x 0 所以x 0时 f x 为增函数 因为奇函数在对称区间上的单调性相同 所以x 0时 f x 也是增函数 因为f 3 f 3 g 3 0 f 3 所以 由图可知f x 0的解集是 3 0 3 答案 1 4 2 3 0 3 探究提高 1 在解决不等式问题时 一种最重要的思想方法就是构造适当的函数 利用函数的图象和性质解决问题 2 函数f x 0或f x 0恒成立 一般可转化为f x min 0或f x max 0 已知恒成立求参数范围可先分离参数 然后利用函数值域求解 微题型2 数列问题的函数 方程 法 1 解由a1 3 an 1 an p 3n 得a2 3 3p a3 a2 9p 3 12p 因为a1 a2 6 a3成等差数列 所以a1 a3 2 a2 6 即3 3 12p 2 3 3p 6 微题型3 解析几何问题的方程 函数 法 例1 3 设椭圆中心在坐标原点 a 2 0 b 0 1 是它的两个顶点 直线y kx k 0 与ab相交于点d 与椭圆相交于e f两点 探究提高解析几何中的最值是高考的热点 在圆锥曲线的综合问题中经常出现 求解此类问题的一般思路为在深刻认识运动变化的过程之中 抓住函数关系 将目标量表示为一个 或者多个 变量的函数 然后借助于函数最值的探求来使问题得以解决 热点二数形结合思想的应用 微题型1 利用数形结合思想讨论方程的根或函数零点 例2 1 1 若函数f x 2x 2 b有两个零点 则实数b的取值范围是 a 5b 6c 7d 8 解析 1 由f x 2x 2 b有两个零点 可得 2x 2 b有两个不等的实根 从而可得函数y 2x 2 的图象与函数y b的图象有两个交点 如图所示 结合函数的图象 可得0 b 2 故填 0 2 答案 1 0 2 2 b 探究提高用图象法讨论方程 特别是含参数的指数 对数 根式 三角等复杂方程 的解 或函数零点 的个数是一种重要的思想方法 其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式 不熟悉时 需要作适当变形转化为两个熟悉的函数 然后在同一坐标系中作出两个函数的图象 图象的交点个数即为方程解 或函数零点 的个数 微题型2 利用数形结合思想解不等式或求参数范围 探究提高求参数范围或解不等式问题经常联系函数的图象 根据不等式中量的特点 选择适当的两个 或多个 函数 利用两个函数图象的上 下位置关系转化数量关系来解决问题 往往可以避免繁琐的运算 获得简捷的解答 微题型3 利用数形结合思想求最值 例2 3 1 已知p是直线l 3x 4y 8 0上的动点 pa pb是圆x2 y2 2x 2y 1 0的两条切线 a b是切点 c是圆心 则四边形pacb面积的最小值为 2 设双曲线的左焦点为f1 连接pf1 根据双曲线的定义可知 pf 2 pf1 则 apf的周长为 pa pf af pa 2 pf1 af pa pf1 af 2 由于 af 2是定值 探究提高破解圆锥曲线问题的关键是画出相应的图形 注意数形结合的相互渗透 并从相关的图形中挖掘对应的信息加以分析与研究 直线与圆锥曲线的位置关系的转化有两种 一种是通过数形结合建立相应的关系式 另一种是通过代数形式转化为二元二次方程组的解的问题进行讨论 1 当问题中涉及一些变化的量时 就需要建立这些变化的量之间的关系 通过变量之间的关系探究问题的答案 这就需要使用函数思想 2 借助有关函数的性质 一是用来解决有关求值 解 证 不等式 解方程以及讨论参数的取值范围等问题 二是在问题的研究中 可以通过建立函数关系式或构造中间函数来求解 3 许多数学问题中 一般都含有常量 变量或参数 这些参变量中必有一个处于突出的主导地位 把这个参变量称为主元 构造出关于主元的方程 主元思想有利于回避多元的困扰 解方程的实质就是分离参变量 4 在数学中函数的图象 方程的曲线 不等式所表示的平面区域 向量的几何意义 复数的几何意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班主任跟岗培训大纲
- 2024北京西城区四年级(下)期末语文试题及答案
- 绿色建筑新趋势
- 贵州省贵阳六中联盟校2024-2025学年高二(下)月考历史试卷(4月份)-教师用卷
- 旅游市场全面探究
- 2025委托合同代理书范文
- 2025年汽车销售合同范本模板
- RFID项目商业计划书
- 巩固国家卫生县城病媒生物防制工作要点
- 小儿耳鼻喉科麻醉的病例讨论
- 第19课《十里长街送总理》 统编版语文(五四学制)六年级上册
- 【MOOC】航空航天材料概论-南京航空航天大学 中国大学慕课MOOC答案
- 仓库发货清单
- 法理学-(第五版)完整版ppt全套教学教程课件(最新)
- GB∕T 34876-2017 真空技术 真空计 与标准真空计直接比较校准结果的不确定度评定
- GB∕T 31568-2015 热喷涂热障ZrO2涂层晶粒尺寸的测定 谢乐公式法
- 陕西省黄河流域(陕西段)污水综合排放标准编制说明
- 2022年郑州信息科技职业学院职业适应性测试模拟试题及答案解析
- 后勤不“后”与“时”俱进——信息技术促幼儿园保育员专业化发展的研究
- 清洁工具使用及动作规范
- VTE防治基础知识
评论
0/150
提交评论