第七章 平面直角坐标系 备课.doc_第1页
第七章 平面直角坐标系 备课.doc_第2页
第七章 平面直角坐标系 备课.doc_第3页
第七章 平面直角坐标系 备课.doc_第4页
第七章 平面直角坐标系 备课.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7.1.1有序数对教学目标 现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。 让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成形数结合的意识。重点、难点重点:理解有序数对的概念,用有序数来表示位置。难点:理解有序数对是“有序的”,并用它解决实际问题。教学过程一、创设问题情境,引入新课展示书64画图,并提出问题,在建国周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?原来,广场上有许多同学,每个人都根据图案设计要求,按排序列上在一个确定的位置,随着指挥员的信号,他们举起不同颜色的花束(如第10排第三产业5列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。二、师生共同参于教学活动由学生回答以下问题:(1)(影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。(2)根据这个错误在书上所处的“几行”和“几列”来确定它的位置。对于下面这个根据教师平面图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。”学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置.思考:(1)怎样确定教师的位置?(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。(3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。让学生讨论、交流后得到以下共识:(1)可用排数和列数两个不同的数来确定位置。(2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。教师指出:上面的问题都是通过像“9排7号”第1列第5排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。活动4,举出用有序数对来表示一个位置的实例,加深对有序数对的理解。例如:人们常用经纬度来表示地球上的地点。鼓励学生多举例,同时强调有序数对来表示位置是“有序”的。三、巩固练习让学生完成P65的练习。四、布置作业课本习题71,1。 7.1 .2 平面直角坐标系(1)教学目标 1、认识平面直角坐标系,了解点与坐标的对应关系;毛2、在给定的直角坐标系中,能由点的位置写出点的坐标(坐标都为整数);3、渗透数形结合的思想;4、通过介绍数学家的故事,渗透理想和情感的教育重点难点 重点:认识平面直角坐标系。难点:根据点的位置写出点的坐标。教学过程 一、情境导入1、在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置如图1所示,你能根据图示确切地描述他们三个人的位置关系吗? 在学生进行叙述后,教师可以抓住以什么为“基准”,并借助于数轴来处理这个问题,从而进入课题2、如果我们画一条数轴,取小红的位置为原点,取向右的方向为正方向,取两盏路灯间的距离为一个单位长度,那么小华的位置(A)就可以用3来表示,小明的位置(B)就可以用6来表示(如图2).此时,我们说点A在数轴上的坐标是3,点B在数轴上的坐标是6这样数轴上的点的位置与坐标之间就建立了对应关系 问题:(1)在上述情境中,如果小兵位于小明左侧的第二盏路灯处,你能说出小兵在数轴上对应的点的坐标吗? (2)如果小兵站在一个长方形的操场上,你用什么方法可以确定小兵的位置?(3)如果小兵站在一个大操场上,你用什么方法可以确定小兵的位置?二、探究新知1、平面直角坐标系的引入 对于上述第(2)个问题,我们可以用图3来表示: 这时,小兵(P)的位置就可以用两个数来表示如点P离AB边1 cm,离AD边1. 5 cm,如果1 cm代表20 m,那么小兵离AB边20 m,离AD边30 m. 对于上述第(3)个问题,我们是否也可以借助于这样的一些线来确定小兵的位置呢?我们在小兵所在的平面内画上一些方格线(如图4),利用上节课所学的知识,就可以解决这个问题了(然后由学生回答这个问题的解决过程)受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准(如图5).2、平面直角坐标系的概念 教师边在黑板上画图(见教材第47页图6.1-4),边介绍平面直角坐标系、x轴(或横轴),y轴(或纵轴)、原点等的概念注意:在一般情况下,两条坐标轴所取的单位长度是一致的3、点的坐标,有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了如下图,由点A分别向x轴和y轴作垂线,垂足M在x上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标 注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开。尝试:请在图6中写出点B、C、D的坐标。4、坐标轴上点的坐标问题:(1)在图7的平面直角坐标系中,你能分别说出点A,B,C,D的坐标是什么吗? (2)从上面的练习中你有什么发现?原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?在这里教师必须再次强调点的横坐标写在前面,纵坐标写在后面的坐标写法。三、巩固练习教材第68页“练习”第1题。四、总结归纳1、平面直角坐标系的作用; 2、平面直角坐标系的有关概念; 3、已知一个点,如何确定这个点的坐标;4、人生也有一个坐标系(材料见“背景资料”)五、布置作业教材第69页习题7.1第3,4题7.1.2 平面直角坐标系(2) 教学目标 1.能建立适当的直角坐标系,描述物体的位置; 2.在给定的直角坐标系中,会根据坐标描出点的位置. 3.经历画坐标系、描点、连线,等过程,发展学生的数形结合的意识, 合作交流的意识. 重点、难点 重点:建立适当直角坐标系,描述物体的位置;在给定的直角坐标系中;根据坐标描出点的位置. 难点:建立适当直角坐标系. 教学过程 一、复习旧知,导入新课 问题:1.为什么叫做直角坐标系,画出直角坐标系.2.写出图中点A、B、C、D,E的位置. 二、师生共同活动 例:在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4). 分析:先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y轴的垂线,垂线的交点就是A. 师生共同活动作出点A、B、C、D、E由学生独立完成. 探究:如图,正方形ABCD的边长为6. (1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y 轴是哪条线? (2)写出正方形的顶点A、B、C、D的坐标. (3)请另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下. 学生讨论、交流后,得到以下共识: y轴是AD所在直线. A(0,0),B(0,6),C(6,6),D(6,0). 让部分学生描述,并投影作法,同学讨论. 建立的平面直角坐标系不同,则各点的坐标也不同. 三、巩固练习 教科书P68、练习2 四、布置作业 .教科书P70 5 6,10 11. 721 用坐标表示地理位置教学目标1知识技能 了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力2数学思考 通过学习如何用坐标表示地理位置,发展学生的空间观念3解决问题 通过学习,学生能够用坐标系来描述地理位置4情感态度 通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度教学重点与难点重点:利用坐标表示地理位置难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题教学过程一、创设问题情境观察:教材第73页图72-1今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题二、师生互动,探究用坐标表示地理位置的方法活动1:根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置小刚家:出校门向东走150米,再向北走200米小强家:出校门向西走200米,再向北走350米,最后再向东走50米小敏家:出校门向南走100米,再向东走300米,最后向南走75米问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米)由学生画出平面直角坐标系,标出学校的位置,即(0,0)引导学生一同完成示意图问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地写出三位同学家的位置活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程经过学生讨论、交流,教师适当引导后得出结论:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称应注意的问题:用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称(举例)活动3:进一步理解如何用坐标表示地理位置展示问题:(教材第82页,公园平面图)春天到了,初一(13)班组织同学到人民公园春游,张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置张明:“我这里的坐标是(300,300)”王丽:“我这里的坐标是(200,300)”李华:“我在你们东北方向约420米处”实际上,他们所说的位置都是正确的你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?用他们的方法,你能描述公园内其他景点的位置吗?让学生分别画出直角坐标系,标出其他景点的位置三、课堂小结让学生归纳说出如何利用坐标表示地理位置四、课后作业教材第79页第5题、第8题722 用坐标表示平移教学目标 1知识技能 掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程2数学思考 发展学生的形象思维能力,和数形结合的意识3解决问题 用坐标表示平移体现了平面直角坐标系在数学中的应用4情感态度 培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化教学重点与难点重点:掌握坐标变化与图形平移的关系难点:利用坐标变化与图形平移的关系解决实际问题教学过程一、引言上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用二、新课展示问题:教材第75页图(1)如图将点A(2,3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或( , );将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或( , )教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移例 如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2)(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论