已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节、直线的倾斜角与斜率、直线的方程一、直线的倾斜角与斜率1直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角当直线与x轴平行或重合时,规定它的倾斜角为0.(2)倾斜角的范围为0,)_2直线的斜率(1)定义:一条直线的倾斜角的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即ktan_,倾斜角是90的直线没有斜率(2)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1x2)的直线的斜率公式为k.二、直线方程的形式及适用条件名称几何条件方程局限性点斜式过点(x0,y0),斜率为kyy0k(xx0)不含垂直于x轴的直线斜截式斜率为k,纵截距为bykxb不含垂直于x轴的直线两点式过两点(x1,y1),(x2,y2),(x1x2,y1y2)不包括垂直于坐标轴的直线截距式在x轴、y轴上的截距分别为a,b(a,b0)1不包括垂直于坐标轴和过原点的直线一般式AxByC0(A,B不全为0)第三节、二元一次不等式(组)及简单的线性规划问题1二元一次不等式(组)表示的平面区域(1)在平面直角坐标系中二元一次不等式(组)表示的平面区域:不等式表示区域AxByC0直线AxByC0某一侧的所有点组成的平面区域不包括边界直线AxByC0包括边界直线不等式组各个不等式所表示平面区域的公共部分(2)二元一次不等式表示的平面区域的确定:二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x0,y0)作为测试点来进行判定,满足不等式的,则平面区域在测试点所在的直线的一侧,反之在直线的另一侧2线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)目标函数关于x,y的函数解析式,如z2x3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题第三节、两直线的位置关系一、两条直线的位置关系斜截式一般式方程yk1xb1yk2xb2A1xB1yC10(AB0)A2xB2yC20(AB0)相交k1k2A1B2A2B10垂直k1或k1k21A1A2B1B20 平行k1k2且b1b2或重合k1k2且b1b2A1A2,B1B2,C1C2(0)二、两条直线的交点设两条直线的方程是l1:A1xB1yC10,l2:A2xB2yC20,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立三、几种距离1两点间的距离平面上的两点A(x1,y1),B(x2,y2)间的距离公式:d(A,B)|AB|.2点到直线的距离点P(x1,y1)到直线l:AxByC0的距离d.第四节、圆 _的 _方 _程1圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(xa)2(yb)2r2(r0)圆心:(a,b),半径:r一般方程x2y2DxEyF0(D2E24F0)圆心:,半径:2点与圆的位置关系点M(x0,y0)与圆(xa)2(yb)2r2的位置关系:(1)若M(x0,y0)在圆外,则(x0a)2(y0b)2r2.(2)若M(x0,y0)在圆上,则(x0a)2(y0b)2r2.(3)若M(x0,y0)在圆内,则(x0a)2(y0b)20,b0)1(a0,b0)图形性质范围xa或xaya或ya对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,),其中c实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长通径过焦点垂直于实轴的弦叫通径,其长为a、b、c的关系c2a2b2(ca0,cb0)第八节、抛_物_线1抛物线定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线2抛物线的标准方程与几何性质标准方程y22px(p0)y22px(p0)图形范围x0,yRx0,yR对称轴x轴顶点坐标原点O(0,0)焦点坐标准线方程xx离心率e1标准方程x22py(p0)x22py(p0)图形范围y0,xRy0,xR对称轴y轴顶点坐标原点O(0,0)焦点坐标准线方程yy离心率e1第九节圆锥曲线的综合问题(文视情况1直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y(或x)得关于变量x(或y)的方程:ax2bxc0(或ay2byc0)若a0,可考虑一元二次方程的判别式,有:0直线与圆锥曲线相交;0直线与圆锥曲线相切;b0)的离心率为.双曲线x2y21的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.1B.1C.1 D.1 答案D本例中条件“双曲线x2y21的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16”变为“此椭圆的长轴长等于圆x2y22x150的半径”问题不变椭圆方程为y21.由题悟法1解决与到焦点的距离有关的问题时,首先要考虑用定义来解题2椭圆方程的求法多用待定系数法,其步骤为:(1)定标准;(2)设方程;(3)找关系;(4)得方程3当椭圆焦点位置不明确时,可设为1(m0,n0,mn),也可设为Ax2By21(A0,B0,且AB)以题试法2(2012张家界模拟)椭圆y21的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|()A. B.C. D4 选A考点二、椭圆的几何性质典题导入3(1)F1、F2是椭圆y21的左右焦点,点P在椭圆上运动则的最大值是()A2B1C2 D4(2)(2012江西高考)椭圆1(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1、F2,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.B.C. D.2 答案(1)B(2)B由题悟法1求椭圆的离心率实质上是建立a,b,c中任意两者或三者之间的关系,利用e或e 去整体求解2解决与椭圆几何性质有关的问题时:一是要注意定义的应用;二是要注意数形结合;三是要注意axa,byb,0e1等几何性质在建立不等关系或求最值时的关键作用以题试法4(1)(2012西工大附中适应性训练)已知动点P(x,y)在椭圆1上,若A点的坐标为(3,0),|,|1,且,0,则|,|的最小值为_(2)设F1,F2分别是椭圆1(ab0)的左,右焦点,若在直线x上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是_答案:(1)(2)考点三、直线与椭圆的位置关系典题导入5(2012安徽高考)如图,F1,F2分别是椭圆C:1(ab0)的左,右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,F1AF260.(1)求椭圆C的离心率;(2)已知AF1B的面积为40,求a,b的值e. a10,b5.由题悟法1直线与椭圆位置关系的判断将直线的方程和椭圆的方程联立,通过讨论此方程组的实数解的组数来确定,即用消元后的关于x(或y)的一元二次方程的判断式的符号来确定:当0时,直线和椭圆相交;当0时,直线和椭圆相切;当0,b0)的一条渐近线的斜率为 .可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小注意当ab0时,双曲线的离心率满足1e0时,e(亦称为等轴双曲线);当ba0时,e.3直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点考点一、双曲线的定义及标准方程典题导入1(1)(2012湖南高考)已知双曲线C:1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.1B.1C.1 D.1(2)(2012辽宁高考)已知双曲线x2y21,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1PF2,则|PF1|PF2|的值为_ 答案(1)A(2)2由题悟法1应用双曲线的定义需注意的问题在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”若定义中的“绝对值”去掉,点的轨迹是双曲线的一支2双曲线方程的求法(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx2ny21(mna0),O为坐标原点,离心率e2,点M(,)在双曲线上(1)求双曲线的方程;(2)若直线l与双曲线交于P,Q两点,且0.求的值双曲线的方程为1. .由题悟法1解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x(或y)的一元二次方程利用根与系数的关系,整体代入2与中点有关的问题常用点差法注意根据直线的斜率k与渐近线的斜率的关系来判断直线与双曲线的位置关系以题试法4(2012长春模拟)F1,F2分别为双曲线1(a0,b0)的左,右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,满足|,|3|,|,则此双曲线的渐近线方程为_ 答案:yx第八部分1.抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离,记牢对解题非常有帮助2用抛物线定义解决问题,体现了等价转换思想的应用3由y2mx(m0)或x2my(m0)求焦点坐标时,只需将x或y的系数除以4,再确定焦点位置即可考点一、抛物线的定义及应用典题导入1(1)(2011辽宁高考)已知F是拋物线y2x的焦点,A,B是该拋物线上的两点,|AF|BF|3,则线段AB的中点到y轴的距离为()A.B1C. D.(2)(2012曲阜师大附中质检)在抛物线C:y2x2上有一点P,若它到点A(1,3)的距离与它到抛物线C的焦点的距离之和最小,则点P的坐标是()A(2,1) B(1,2)C(2,1) D(1,2) 答案(1)C(2)B由题悟法涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解以题试法2(2012安徽高考)过抛物线y24x的焦点F的直线交该抛物线于A,B两点若|AF|3,则|BF|_. 答案:考点二、抛物线的标准方程及几何性质典题导入3、(1)(2012山东高考)已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py (p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()Ax2yBx2yCx28y Dx216y(2)(2012四川高考)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,则|OM|()A2 B2C4 D2 答案(1)D(2)B由题悟法1求抛物线的方程一般是利用待定系数法,即求p但要注意判断标准方程的形式2研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用以题试法4(2012南京模拟)已知抛物线x24y的焦点为F,准线与y轴的交点为M,N为抛物线上的一点,且|NF|MN|,则NMF_.() 答案:考点三、直线与抛物线的位置关系典题导入5、(2012福建高考)如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x22py(p0)上(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点 x24y.(2)证明:由(1)知yx2,yx.设P(x0,y0),则x00,y0x,且l的方程为yy0x0(xx0),即yx0xx.由得所以Q为.设M(0,y1),令0对满足y0x(x00)的x0,y0恒成立由于(x0,y0y1),由0,得y0y0y1y1y0,即(yy12)(1y1)y00.(*)由于(*)式对满足y0x(x00)的y0恒成立,所以解得y11.故以PQ为直径的圆恒过y轴上的定点M(0,1)由题悟法1设抛物线方程为y22px(p0),直线AxByC0,将直线方程与抛物线方程联立,消去x得到关于y的方程my2nyq0.(1)若m0,当0时,直线与抛物线有两个公共点;当0时,直线与抛物线只有一个公共点;当0时,直线与抛物线没有公共点(2)若m0,直线与抛物线只有一个公共点,此时直线与抛物线的对称轴平行2与焦点弦有关的常用结论(以右图为依据)(1)y1y2p2,x1x2.(2)|AB|x1x2p(为AB的倾斜角)(3)SAOB(为AB的倾斜角)(4)为定值.(5)以AB为直径的圆与准线相切(6)以AF或BF为直径的圆与y轴相切(7)CFD90.以题试法6(2012泉州模拟)如图,点O为坐标原点,直线l经过抛物线C:y24x的焦点F.(1)若点O到直线l的距离为,求直线l的方程;(2)设点A是直线l与抛物线C在第一象限的交点点B是以点F为圆心,|FA|为半径的圆与x轴的交点,试判断AB与抛物线C的位置关系,并给出证明解:(1)抛物线的焦点F(1,0),当直线l的斜率不存在时,即x1不符合题意当直线l的斜率存在时,设直线l的方程为:yk(x1),即kxyk0.所以,解得k.故直线l的方程为:y(x1),即xy10.(2)直线AB与抛物线相切,证明如下:设A(x0,y0),则y4x0.因为|BF|AF|x01,所以B(x0,0)所以直线AB的方程为:y(xx0),整理得:xx0把方程代入y24x得:y0y28x0y4x0y00,64x16x0y64x64x0,所以直线AB与抛物线相切第九部分1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题解题中要充分重视根与系数的关系和判别式的应用2当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”考点一、直线与圆锥曲线的位置关系典题导入1、(2012北京高考)已知椭圆C:1(ab0)的一个顶点为A(2,0),离心率为.直线yk(x1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当AMN的面积为时,求k的值自主解答(1)由题意得解得b,所以椭圆C的方程为1.(2)由得(12k2)x24k2x2k240.设点M,N的坐标分别为(x1,y1),(x2,y2),则y1k(x11),y2k(x21),x1x2,x1x2,所以|MN|.又因为点A(2,0)到直线yk(x1)的距离d,所以AMN的面积为S|MN| d.由,解得k1.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解以题试法2(2012信阳模拟)设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A.B2,2C1,1 D4,4解析:选C易知抛物线y28x的准线x2与x轴的交点为Q(2,0),于是,可设过点Q(2,0)的直线l的方程为yk(x2)(由题可知k是存在的),联立k2x2(4k28)x4k20.当k0时,易知符合题意;当k0时,其判别式为(4k28)216k464k2640,可解得1k1.考点二、最值与范围问题典题导入3(2012浙江高考)如图,椭圆C:1(ab0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论