(试题 试卷 真题)《1.4整式的乘法》导学案3_第1页
(试题 试卷 真题)《1.4整式的乘法》导学案3_第2页
(试题 试卷 真题)《1.4整式的乘法》导学案3_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.4 整式的乘法(3)一、学习目标1理解多项式乘法的法则,并会进行多项式乘法的运算二、学习重点:多项式乘法的运算三、学习难点:探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题(一)预习准备(1)预习书p18-19(2)思考:如何避免“漏项”?(3)预习作业:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(二)学习过程: 如图,计算此长方形的面积有几种方法?如何计算? 方法1:S方法2:S方法3:S方法4:S由此得到: (m+b)(a+n) =运用乘法分配律进行解释,请将其中的一个多项式看作一个整体,再运用单项式与多项式相乘的方法进行计算(把(a+n)看作一个整体)(m+b)(a+n)多项式与多项式相乘:先用一个乘以另一个多项式的,再把所得的积例1 计算: 注意:(1)用一个多项式的每一项依次去乘另一个多项式的每一项,不要漏乘,在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式项数之积。 (2)多项式里的每一项都包含前面的符号,两项相乘时先判断积的符号,再写成代数和形式。 (3)展开后若有同类项必须合并,化成最简形式。例2 计算:(2)练习:(1) (2) (3)(4) (5)(6)1 则m=_ , n=_2若 ,则k的值为( ) (A) a+b (B) ab (C)ab (D)ba3已知 则a=_ b=_拓展:4在与的积中不含与项,求P、q的值回顾小结:多项式和多项式相乘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论