历年高考题中的翻折问题.doc_第1页
历年高考题中的翻折问题.doc_第2页
历年高考题中的翻折问题.doc_第3页
历年高考题中的翻折问题.doc_第4页
历年高考题中的翻折问题.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎光临中学数学信息网 历年高考题中的翻折问题 86理科 (8)在正方形SG1G2G3中E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G.那么,在四面体SEFG中必有(A)SGEFG所在平面 (B)SDEFG所在平面(C)GFSEF所在平面 (D)GDSEF所在平面93北京卷(23)如图,ABCD是正方形,E是AB的中点,如将DAE和CBE分别沿虚线DE和CE折起,使AE与BE重合,记A与B重合后的点为P,则面PCD与面ECD所成的二面角为 度.301996高考理科(9)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为d(20)(本小题满分12分) 在直角梯形ABCD中,D=BAD=90,AD=DC=AB=a,(如图一)将ADC 沿AC折起,使D到D.记面ACD为a,面ABC为b.面BCD为g. (i)若二面角a-AC-b为直二面角(如图二),求二面角b-BC-g的大小; (ii)若二面角a-AC-b为60(如图三),求三棱锥D-ABC的体积。(20)本小题主要考查空间线间关系,及运算、推理、空间想象能力。满分12 分。 解:(I)在直角梯形ABCD中, 由已知DAC为等腰直角三角形, 过C作CHAB,由AB=2, 可推得 AC=BC= ACBC 2分 取 AC的中点E,连结, 则 AC又 二面角为直二面角, 又 平面 BC BC,而, BC 4分 为二面角的平面角。 由于, 二面角为。 6分 (II)取AC的中点E,连结,再过作,垂足为O,连结 OE。 AC, AC 为二面角的平面角, 9分 在中, , 2002 北京春季高考(15)正方形ABCD的边长是2,E、F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示)M为矩形AEFD内的一点,如果MBE=MBC,MB和平面BCF所成角的正切值为1/2,那么点M到直线EF的距离为_2/22003北京春季高考11如图,在正三角形ABC中,D,E,F分别为各边的中点, G,H,I,J分别为AF,AD,BE,DE的中点.将ABC 沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度 数为 ( )A90B60C45D02004安徽春季理科(5)等边三角形ABC的边长为4,M、N分别为AB、AC的中点,沿MN将AMN折起,使得面AMN与面MNCB所处的二面角为300,则四棱锥AMNCB的体积为(A) (B) (C) (D)32005湖南高考理科17、(本题满分12分)如图1,已知ABCD是上、下底边长分别为2和6,高为的等腰梯形,将它沿对称轴OO1折成直二面角,如图2。()证明:ACBO1;()求二面角OACO1的大小。ABCDOO1ABOCO1D解法二(I)证明 由题设知OAOO1,OBOO1, 所以AOB是所折成的直二面角的平面角,即OAOB. 从而AO平面OBCO1,OC是AC在面OBCO1内的射影.因为 ,所以OO1B=60,O1OC=30,从而OCBO1图4由三垂线定理得ACBO1.(II)解 由(I)ACBO1,OCBO1,知BO1平面AOC.设OCO1B=E,过点E作EFAC于F,连结O1F(如图4),则EF是O1F在平面AOC内的射影,由三垂线定理得O1FAC.所以O1FE是二面角OACO1的平面角. 由题设知OA=3,OO1=,O1C=1,所以,从而,又O1E=OO1sin30=,所以 即二面角OACO1的大小是2005浙江理科12设M、N是直角梯形ABCD两腰的中点,DEAB于E(如图)现将ADE沿DE折起,使二面角ADEB为45,此时点A在平面BCDE内的射影恰为点B,则M、N的连线与AE所成角的大小等于_902005年高考文科数学江西卷9矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为( )ABCD2006山东理科(12)如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为(A) (B) (C) (D) 2006辽宁19(本小题满分12分)已知正方形,分别是边的中点,将沿折起,如图所示,记二面角的大小为()(1)证明平面;(2)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值ABCDEF(19)本小题主要考查空间中的线面关系,解三角形等基础知识,考查空间想象能力和思维能力.满分12分()证明:、分别是正方形的边、的中点.且四边形是平行四边形平面而平面平面()解法一:点在平面内的射影在直线上,过点用平面垂足为连接为正三角形在的垂直平分线上。又是的垂直平分线点在平面内的射影在直线上过作,垂足为,连接则是二面角的平面角,即设原正方形的边长为,连接,在折后图的中,为直角三角形,在中,解法二:点在平面内的射影在直线上,连结,在平面内过点作,垂足为为正三角形,为的中点,又平面平面又,且,平面,平面,平面,为在平面内的射影。点在平面内的射影在直线上过作,垂足为,连结,则,是二面角的平面角,即设原正方形的边长为。在折后图的中,为直角三角形,在中,解法三:点在平面内的射影在直线上连结,在平面内过点作,垂足为为正三角形,为的中点又平面,平面,平面平面又平面平面,平面,即为在平面内的射影,点在平面内的射影在直线上。过作,垂足为,连结,则是二面角的平面角,即设原正方形的边长为在折后图的中,.为直角三角形,.在中,,.12分2006江苏(19)(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EBCF:FACP:PB1:2(如图1)。将AEF沿EF折起到的位置,使二面角A1EFB成直二面角,连结A1B、A1P(如图2)()求证:A1E平面BEP;()求直线A1E与平面A1BP所成角的大小;()求二面角BA1PF的大小(用反三角函数表示)图1图219本小题主要考查线面垂直、直线和平面所成的角、二面角等基础知识,以及空间线面位置关系的证明、角和距离的计算等,考查空间想象能力、逻辑推理能力和运算能力。解法一:不妨设正三角形ABC的边长为3(1) 在图1中,取BE中点D,连结DF. AE:EB=CF:FA=1:2AF=AD=2而A=600 , ADF是正三角形,又AE=DE=1, EFAD在图2中,A1EEF, BEEF, A1EB为二面角A1EFB的平面角。由题设条件知此二面角为直二面角,A1EBE,又A1E平面BEF,即 A1E平面BEP(2) 在图2中,A1E不垂直A1B, A1E是平面A1BP的垂线,又A1E平面BEP,A1EBE.从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理)设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则E1AQ就是A1E与平面A1BP所成的角,且BPA1Q.在EBP中, BE=EP=2而EBP=600 , EBP是等边三角形.又 A1E平面BEP , A1B=A1P, Q为BP的中点,且,又 A1E=1,在RtA1EQ中,,EA1Q=60o, 直线A1E与平面A1BP所成的角为600在图3中,过F作FM A1P与M,连结QM,QF,CP=CF=1, C=600,FCP是正三角形,PF=1.有PF=PQ,A1E平面BEP, A1E=A1Q, A1FPA1QP从而A1PF=A1PQ, 由及MP为公共边知FMPQMP, QMP=FMP=90o,且MF=MQ,从而FMQ为二面角BA1PF的平面角. 在RtA1QP中,A1Q=A1F=2,PQ=1,又. MQA1P在FCQ中,FC=1,QC=2, C=600,由余弦定理得在FMQ中,二面角BA1PF的大小为【解后反思】在立体几何学习中,我们要多培养空间想象能力, 对于图形的翻折问题,关健是利用翻折前后的不变量,二面角的平面角的适当选取是立体几何的核心考点之一.是高考数学必考的知识点之一.作,证,解,是我们求二面角的三步骤.作:作出所要求的二面角,证:证明这是我们所求二面角,并将这个二面角进行平面化,置于一个三角形中,最好是直角三角形,利用我们解三角形的知识求二面角的平面角.向量的运用也为我们拓宽了解决立体几何问题的角度,不过在向量运用过程中,要首先要建系,建系要建得合理,最好依托题目的图形,坐标才会容易求得.2007安徽文10把边长为的正方形沿对角线折成直二面角,折成直二面角后,在四点所在的球面上,与两点之间的球面距离为()2007广东理科19(本小题满分14分)图6PEDFBCA如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积(1)求的表达式;(2)当为何值时,取得最大值?(3)当取得最大值时,求异面直线与所成角的余弦值(1)由折起的过程可知,PE平面ABC,V(x)=()(2),所以时, ,V(x)单调递增;时 ,V(x)单调递减;因此x=6时,V(x)取得最大值;(3)过F作MF/AC交AD与M,则,PM=,在PFM中, ,异面直线AC与PF所成角的余弦值为;2007湖南18(2007高考湖南卷)如图2,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,并连结,使得平面平面,且连结,如图3AEBCFDG18解:解法一:()因为平面平面,平面平面,平面,所以平面,又平面,所以平面平面(II)过点作于点,连结由(I)的结论可知,平面,所以是和平面所成的角因为平面平面,平面平面,平面,所以平面,故因为,所以可在上取一点,使,又因为,所以四边形是矩形由题设,则所以,因为平面,所以平面,从而故,又,由得故即直线与平面所成的角是解法二:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论