免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三数学应知应会的知识点 圆 几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”. 几何表达式举例: CD过圆心CDAB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) AOB=COD AB = CD (2) AB = CDAOB=COD4圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例:(1) ACB=AOB (2) AB是直径 ACB=90(3) ACB=90 AB是直径(4) CD=AD=BD ABC是Rt 5圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例: ABCD是圆内接四边形 CDE =ABCC+A =1806切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;(3)经过圆心且垂直于切线的直线必经过切点;(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1) OC是半径OCABAB是切线(2) OC是半径AB是切线OCAB(3) 7切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例: PA、PB是切线 PA=PBPO过圆心APO =BPO8弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(如图)(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)(1) (2)几何表达式举例:(1)BD是切线,BC是弦CBD =CAB(2) ED,BC是切线 CBA =DEF9相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.(1) (2)几何表达式举例:(1) PAPB=PCPD(2) AB是直径PCABPC2=PAPB10切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(1) (2)几何表达式举例:(1) PC是切线,PB是割线PC2=PAPB(2) PB、PD是割线PAPB=PCPD11关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上. (1) (2)几何表达式举例:(1) O1,O2是圆心O1O2垂直平分AB(2) 1 、2相切O1 、A、O2三点一线12正多边形的有关计算:(1)中心角an ,半径RN , 边心距rn , 边长an ,内角bn , 边数n;(2)有关计算在RtAOC中进行.公式举例:(1) an =;(2) 几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外)公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正多边形的中心角.二 定理:1不在一直线上的三个点确定一个圆.2任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三 公式:1.有关的计算:(1)圆的周长C=2R;(2)弧长L=;(3)圆的面积S=R2.(4)扇形面积S扇形 =;(5)弓形面积S弓形 =扇形面积SAOBAOB的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S圆柱侧 =2rh; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S圆锥侧 =. (L=2r,R是圆锥母线长;r是底面半径)四 常识:1 圆是轴对称和中心对称图形.2 圆心角的度数等于它所对弧的度数.3 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心;三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.4 直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交 dr ; 直线与圆相切 d=r ; 直线与圆相离 dr.5 圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且Rr)两圆外离 dR+r; 两圆外切 d=R+r; 两圆相交 R-rdR+r;两圆内切 d=R-r; 两圆内含 dR-r.6证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7关于圆的常见辅助线:已知弦构造弦心距.已知弦构造Rt.已知直径构造直角.已知切线连半径,出垂直.圆外角转化为圆周角.圆内角转化为圆周角.构造垂径定理.构造相似形.两圆内切,构造外公切线与垂直.两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直.两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB. 两圆相交构造公共弦,连结圆心构造中垂线.PA、PB是切线,构造双垂图形和全等.相交弦出相似.一切一割出相似, 并且构造弦切角.两割出相似,并且构造圆周角.双垂出相似,并且构造直角.规则图形折叠出一对全等,一对相似.圆的外切四边形对边和相等.若AD BC都是切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖协议样本
- 房屋交易简单协议书范本
- 投资公司投资合作协议模板
- 房屋租赁合同解除书样本
- 中小企业员工培训存在的问题及完善对策-以X饮食公司为例6200字
- 企业并购中的财务风险分析8500字
- T银行移动支付业务及其营销策略调查报告5800字
- 2024年品牌设计年服务合同范本
- 渔业捕捞承包合同-合同范本
- 马道(斜坡)验收表
- 假期补课协议书
- 电子商务支付结算系统开发合同
- 服务质量、保证措施
- (必练)广东省军队文职(经济学)近年考试真题试题库(含答案)
- 含羞草天气课件
- 2024年安全生产知识竞赛考试题库及答案(共五套)
- 22《鸟的天堂》课件
- 农业灌溉装置市场环境与对策分析
- 新疆乌鲁木齐市第十一中学2024-2025学年八年级上学期期中道德与法治试卷
- 2024年江西省高考地理真题(原卷版)
- 部编版小学五年级上册道法课程纲要(知识清单)
评论
0/150
提交评论