




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10.湖南5. 已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=1w#ww.zz&【答案】A【解析】设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点P (2,1)在C 的渐近线上,即.又,C的方程为-=1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.11.湖南21.(本小题满分13分)www.z%zstep.co*&m在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2y2=9外,且对C1上任意一点M,M到直线x=2的距离等于该点与圆C2上点的距离的最小值.()求曲线C1的方程;()设P(x0,y0)(y03)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=4上运动时,四点A,B,C,D的纵坐标之积为定值.【解析】()解法1 :设M的坐标为,由已知得,易知圆上的点位于直线的右侧.于是,所以.化简得曲线的方程为.解法2 :由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.()当点P在直线上运动时,P的坐标为,又,则过P且与圆相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是整理得 设过P所作的两条切线的斜率分别为,则是方程的两个实根,故 由得 设四点A,B,C,D的纵坐标分别为,则是方程的两个实根,所以 同理可得 于是由,三式得.所以,当P在直线上运动时,四点A,B,C,D的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到四点纵坐标之积为定值,体现“设而不求”思想.12.江苏8(2012年江苏省5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 【答案】2。【考点】双曲线的性质。【解析】由得。 ,即,解得。13.江苏19(2012年江苏省16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值【答案】解:(1)由题设知,由点在椭圆上,得,。由点在椭圆上,得椭圆的方程为。(2)由(1)得,又, 设、的方程分别为,。 。 。 同理,。 (i)由得,。解得=2。 注意到,。 直线的斜率为。 (ii)证明:,即。 。 由点在椭圆上知,。 同理。 由得, 。 是定值。【考点】椭圆的性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 23595.1-2025LED用稀土荧光粉试验方法第1部分:光谱的测定
- 包装回收合同范例
- 北京合伙合同范本培训
- 中介代办合同范例
- 个人汽车置换合同范本
- 办公住宿出租合同范本
- 出租铺面合同范本
- 三方合伙范本合同范本
- 履约反担保合同范本
- 单位职工租房合同范例
- 高中校长在2025春季开学典礼上的讲话
- 2025年六年级数学下册春季开学第一课(人教版) 2024-2025学年 典型例题系列(2025版)六年级数学下册(人教版) 课件
- 2025年浙江省台州机场管理有限公司招聘笔试参考题库含答案解析
- 高教版2023年中职教科书《语文》(基础模块)上册教案全册
- 存款代持协议书范文模板
- 2023年部编人教版三年级《道德与法治》下册全册课件【全套】
- 基础模块下册《中国人民站起来了》2
- 光伏项目施工总进度计划表(含三级)
- DB32-T 4757-2024 连栋塑料薄膜温室建造技术规范
- 2024年云上贵州大数据(集团)有限公司招聘笔试冲刺题(带答案解析)
- 部编版小学语文四年级下册教师教学用书(教学参考)完整版
评论
0/150
提交评论