




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时排列与组合1理解排列、组合的概念2能利用计数原理推导排列数公式、组合数公式3能解决简单的实际问题对应学生用书P169【梳理自测】一、排列1若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有()A180种B360种C15种 D30种28名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()AAA BACCAA DAC答案:1.B2.A以上题目主要考查了以下内容:(1)排列的定义:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列xKb 1. Com (2)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A表示(3)排列数公式:An(n1)(n2)(nm1)(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,An(n1)(n2)21n!,排列数公式写成阶乘的形式为A,这里规定0!1.二、组合1CCC等于()AC BC1CC1 DC2一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为()ACC BCCC2CCC DCC13某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有_种答案:1.B2.D3.14以上题目主要考查了以下内容:(1)组合的定义:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示(3)组合数的计算公式:C,由于0!1,所以C1.(4)组合数的性质:CC_;CCC.【指点迷津】1一个区别排列与组合,排列与组合最根本的区别在于“有序”和“无序”取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合2两个公式(1)排列数公式A(2)组合数公式C,利用这两个公式可计算排列问题中的排列数和组合问题中的组合数解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”对应学生用书P169考向一排列问题(2014金华联考)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻【审题视点】本题是排队问题,以人或以位置分析其特殊性、优先考虑,选取合适的方法:捆绑法、插空法、间接法等【典例精讲】(1)从7人中选5人排列,有A765432 520(种)(2)分两步完成,先选3人站前排,有A种方法,余下4人站后排,有A种方法,共有AA5 040(种)(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A种排列方法,共有5A3 600(种)法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A种排法,其他有A种排法,共有AA3 600(种)(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A种方法,再将女生全排列,有A种方法,共有AA576(种)(5) (插空法)先排女生,有A种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A种方法,共有AA1 440(种)【类题通法】解决排列类应用题时,对于相邻问题,常用“捆绑法”;对于不相邻问题,常用“插空法”(特殊元素后考虑);对于“在”与“不在”的问题,常常使用“直接法”或“排除法”(特殊元素先考虑)1六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲不站在两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间恰有两人;(5)甲不站在左端,乙不站在右端;(6)甲、乙、丙三人顺序已定解析:(1)AA480.(2)AA240.(3)AA480.(4)AAA144.(5)A2AA504.(6)A120.考向二组合问题某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?【审题视点】要注意分析特殊元素是“含”、“不含”、“至少”、“至多”【典例精讲】(1)共有C816(种)(2)共有C8 568(种)(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有CCC6 936(种)(4)(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C(CC)14 656(种)【类题通法】(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解用直接法或间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理2从7名男生5名女生中选取5人,分别求符合下列条件的选法总数(1)A,B必须当选;(2)A,B不全当选解析:(1)由于A,B必须当选,那么从剩下的10人中选取3人即可,有C120(种)(2)全部选法有C种,A,B全当选有C种,故A,B不全当选有CC672(种)考向三分组分配问题按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本【审题视点】本题是分组分配问题,要注意区分平均、不平均分组或分配的区别与联系【典例精讲】(1)无序不均匀分组问题w W w .X k b 1.c O m先选1本,有C种选法;再从余下的5本中选2本,有C种选法;最后余下3本全选,有C种选法故共有CCC60(种)(2)有序不均匀分组问题由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有CCCA360(种)(3)无序均匀分组问题先分三步,则应是CCC种方法,但是这里出现了重复不妨记六本书为A,B,C,D,E,F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则CCC种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共有A种情况,而这A种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有15(种)(4)有序均匀分组问题在(3)的基础上再分配给3个人,共有分配方式ACCC90(种)(5)无序部分均匀分组问题共有15(种)(6)有序部分均匀分组问题在(5)的基础上再分配给3个人,共有分配方式A90(种)(7)直接分配问题甲选1本,有C种方法;乙从余下的5本中选1本,有C种方法,余下4本留给丙,有C种方法,故共有分配方式CCC30(种)【类题通法】均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关;有序分组要在有无序分组的基础上乘以分组数的阶乘数34个不同的球,4个不同的盒子,把球全部放入盒内(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?解析:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有CCCA144(种)(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法对应学生用书P171 (2013高考全国大纲卷)6个人排成一行,其中甲、乙两人不相邻的不同排法共有_种(用数字作答)【方法分析】题目条件:6个元素全排,其中特殊元素,甲、乙不相邻解题目标:求排法总数关系探究:()甲、乙不相邻,即甲、乙中间有人,让甲、乙两人插入别人之间插空法()6人的全排中只有两类:甲、乙相邻或不相邻先确定甲、乙相邻的排法,则剩下的为所求【解答过程】方法一:先把除甲、乙外的4个人全排列,共有A种方法再把甲、乙两人插入这4人形成的五个空位中的两个,共有A种不同的方法故所有不同的排法共有AA2420480(种)方法二:6人排成一排,所有不同的排法有A720(种),其中甲、乙相邻的所有不同的排法有AA240(种),所以甲、乙不相邻的不同排法共有720240480(种)【答案】480【回归反思】解决排列类应用题的主要方法X|k | B | 1 . c |O |m(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列1(2013高考山东卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg alg b的不同值的个数是()A9B10C18 D20解析:选C.利用排列知识求解从1,3,5,7,9这五个数中每次取出两个不同数的排列数为A20,但lg 1lg 3lg 3lg 9,lg3lg 1lg 9lg 3,所以不同值的个数为20218,故选C.2(2013高考北京卷)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_解析:先分组后用分配法求解,5张参观券分为4组,其中有2个连号的有4种分法,每一种分法中的排列方法有A种,因此共有不同的分法4A42496(种)答案:963(2013高考广东卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有_种(用数字作答)解析:利用排列组合知识列式求解由题意知,所有可能的决赛结果有CCC6160(种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢结构电气施工方案
- 绿化强电箱施工方案
- 2025至2031年中国单把浴缸龙头行业投资前景及策略咨询研究报告
- 2025至2030年中国防尘挠性连接管数据监测研究报告
- 2025至2030年中国羊毫大提斗笔数据监测研究报告
- 2025至2030年中国牛皮圆轮带数据监测研究报告
- 屋顶起砂修复施工方案
- 红桥抗渗透防腐施工方案
- 昆明钢结构防水施工方案
- 面试题及答案和思路
- 静脉治疗行业标准
- 大学物理复习资料
- 2023年国家药监局药品审评中心招聘笔试真题
- 完善食品安全风险管控清单制度
- 安桥功放机TX-NR3010说明书
- 《畜禽粪肥还田利用技术规范(征求意见稿)》编制说明
- 2024年湖北随州国资本投资运营集团限公司高层次人才招聘【23人】高频考题难、易错点模拟试题(共500题)附带答案详解
- 肺结节科普宣教
- 通风空调系统识图
- 创业思维-创造你喜爱的人生智慧树知到期末考试答案章节答案2024年浙江旅游职业学院
- 2024年工程承包合同书范文
评论
0/150
提交评论