解直角三角形_第1页
解直角三角形_第2页
解直角三角形_第3页
解直角三角形_第4页
解直角三角形_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解直角三角形之方位角专项1. 定义:方位角是以观测点为中心(方向角的顶点),以正北或正南为始边,以旋转到观测目标所在的方向为终边所成的锐角。2. 运用锐角三角函数解决实际问题的方法:弄清题意,画出示意图找出图形中的线段、角所表示的实际意义,并找到所要解决的问题寻找要求的直角三角形,有时需要作适当的辅助线选择合适的边角关系式,进行有关锐角三角函数的计算例题如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60方向的C地,有一艘渔船遇险,要求马上前去救援此时C地位于北偏西30方向上,A地位于B地北偏西75方向上,A、B两地之间的距离为12海里求A、C两地之间的距离(参考数据:1.41,1.73,2.45,结果精确到0.1)解:过点B作BDCA交CA延长线于点D,由题意得,ACB=6030=30,ABC=7560=15。DAB=DBA=45。在RtABD中,AB=12,DAB=45,BD=AD=ABcos45=6。在RtCBD中,。AC=(海里)。答:A、C两地之间的距离为6.2海里。过点B作BDCA交CA延长线于点D,根据题意可得ACB和ABC的度数,然后根据三角形外角定理求出DAB的度数,已知AB=12海里,可求出BD、AD的长度,在RtCBD中,解直角三角形求出CD的长度,继而可求出A、C之间的距离。如下图所示,小岛P的周围20海里内有暗礁,某渔船沿北偏东60的AM方向航行在A处测得P岛的方向为北偏东30,且距A处40海里,该渔船若不改变航向,有无触礁的可能?若有可能触礁,则该渔船在A处应再向北偏东偏离多大角度才能脱险?如图,作PBAM于MDAB=60,DAP=30,PAB=60-30=30,PB=APsin30=20海里202(海里),该渔船若不改变航向,有触礁的可能;作 P的切线AE,切点为EsinPAE=20240=22,PAE=45,DAE=30+45=75,MAE=75-60=15答:有可能触礁,该渔船在A处应再向北偏东至少偏离15才能脱离危险如图,一艘海轮位于灯塔P的北偏东53方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向上的B处(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置(参考数据:sin53=0.80,cos53=0.60,tan53=0.33,=1.41)解:(1)如图,作PCAB于C,在RtPAC中,PA=100,PAC=53,PC=PAsinPAC=1000.80=80,在RtPBC中,PC=80,PBC=BPC=45,PB=PC=1.4180113,即B处与灯塔P的距离约为113海里;(2)CBP=45,PB113海里,灯塔P位于B处北偏西45方向,且距离B处约113海里设渔船按AN方向航行刚好可以脱离危险,过点P作PDAN于点D,则PD=22海里在RtPAD中,sinPAD=PDPA=20240=22 PAD=45,MAN=45-30=15答:有可能触礁,该渔船在A处应再向北偏东至少偏离15才能脱离危险设渔船按AN方向航行刚好可以脱离危险,过点P作PDAN于点D,则PD=22海里在RtPAD中,s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论