已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 一 绪论 (一 )气 压传动技术的研究发展动向 随着科学技术的不断进步,目前气压技术正向着高压、高速、大功率、高效、高度集成化的方向发展。虽然气压传动技术方便简洁,但是气压传动中存在着一些亟待解决的问题,如:气压系统工作时的稳定性、工作介质的泄漏、气压冲击对设备可靠性的影响等等,这些问题都是气压传动技术需要研究和解决的。任何技术的改革和创新,都必须以稳定、可靠的工作为前提,这样才具有它的实际意义。 (二)气压传动技术的应用 机械制造业,其中包括机械加工生产线上工件的装夹及搬送,铸造生产线上的造型 、捣固、合箱等。在汽车制造中,汽车自动化生产线、车体部件自动搬运与固定、自动焊接等。 电子 IC 及电器行业,如用于硅片的搬运,元器件的插装与锡焊,家用电器的组装等。 石油、化工业 用管道输送介质的自动化流程绝大多数采用气动控制,如石油提炼加工、气体加工、化肥生产等。 轻工食品包装业,其中包括各种半自动或全自动包装生产线,例如:酒类、油类、煤气罐装,各种食品的包装等。 机器人,例如装配机器人,喷漆机器人,搬运机器人以及爬墙、焊接机器人等。 其它,如车辆刹车装置,车门开闭装置,颗粒物质的筛选,鱼雷导弹自动控制装置 等。目前各种气动工具的广泛使用,也是气动技术应用的一个组成部分。 (三)气压传动的特点 气压传动的优点 :以空气为工作介质,工作介质获得比较容易,用后的空气排到大气中,处理方便,与液压传动相比不必设置回收的油箱和管道;因空气的粘度很小(约为液压油动力粘度的万分之一),其损失也很小,所以便于集中供气、远距离输送。外泄漏不会像液压传动那样严重污染环境;与液压传动相比,气压传动动作迅速、反应快、维护简单、工作介质清洁,不存在介质变质等问题;工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射、振动等恶 劣工作环境中,比液压、电子、电气控制优越;成本低,过载能自动保护。 气压传动的缺点:由于空气具有可压缩性,因此工作速度稳定性稍差,但采用气 2 液联动装置会得到较满意的效果;因工作压力低(一般为 0.31.0MPa),又因结构尺寸不宜过大,总输出力不宜大于 10 40kN;噪声较大,在高速排气时要加消声器;气动装置中的气信号传递速度在声速以内比电子及光速慢,因此,气动控制系统不宜用于元件级数过多的复杂回路。 (四)机械手的组成 工业的机械手由执行机构、驱动机构和控制机构三部分组成 。 1 执行机构 ( 1) 手部 即 直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。手部多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、楔块杠杆式、齿轮齿条平行连杆式、内撑连杆式、右丝杠螺母式、弹簧式和重力式。 ( 2)腕部 是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。手腕有独立的自由度。有回转运动、上下摆动、 左右摆动。一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。 目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小(一般小于 2700) ,并且要求严格密封,否则就难保证稳定的输出扭距。因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。 ( 3)臂部 手臂部件是机械手的重要握持部件。它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。 臂部运动的目的: 把手部送到空间运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。 手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。因此,它的结构、工作范围、灵活性以及抓重大小和定位精 3 度直接影响机械手的工作性能。 ( 4)行走机构 有的工业机械手带有行走机构,我国的正处于仿真阶段。 驱动机构是 工业机械手的重要组成部分。根据动力源的不同 , 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。采用气压机构驱动机械手 ,结构简单、尺寸紧凑、重量轻、控制方便、可获得较大的输出功率、气体不可压缩,压力、流量易于控制,反应灵敏、控位精确等优秀特点。 3 控制系统分类 在机械手的控制上,有点动控制和连续控制两种方式。大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。主要控制的是坐标位置,并注意其加速度特性。 (五)本课题设计的主要内容 本设计课题名称为 真空吸盘式气动 机械手 的设计,设计一套真空吸盘式气动机械手,它采用圆柱坐标型的运动形式,气压传动, PLC系统控制。功能原理先进,动作可靠,结构合理,安全经济,满足生产要求。 性能特点:机械手的动作循环(工件平放):真空吸盘吸取工件 -大臂上升 -大臂回转 -手臂延伸 -真空吸盘放下工件 -手臂收缩 -大臂反转 -大臂下降。 主要技术参数:吸持力 2kg;自由度数为 3;运动形式为圆柱坐标;手臂伸缩行程范围 0-300mm,手臂升降行程范围 0-200mm;手臂回转行程范围 0-180;定位方式为定位块;控制方式为 点位式、 PLC控制;驱动方式为气压传动系统。 (六)设计的基本思路、方案 分析、理解设计任务书的要求查阅相关资料初步拟订设计方案设计方案对比并确定最佳方案参数的设计计算装配图草图零件设计零件草图绘制装配图绘制零件图编写设计说明书 (七)设计原则 这次毕业设计的设计原则是:以任务书所要求的具体设计要求为根本设计目标,充分考虑机械手工作的环境和工艺流程的具体要求。在满足工艺要求的基础上,尽可 4 能的使结构简练,尽可能采用标准化、模块化的通用元配件,以降低成本,同时提高可靠性。本着科学经 济和满足生产要求的设计原则,同时也考虑本次设计是毕业设计的特点,将大学期间所学的知识,如机械设计、机械原理、 液压、气动、电气传动及控制、传感器、可编程控制器( PLC)、电子技术、自动控制、机械系统仿真等知识 尽可能多的综合运用到设计中,使得经过本次设计对大学阶段的知识得到巩固和强化,同时也考虑个人能力水平和时间的客观实际,充分发挥个人能动性,脚踏实地,实事求是的做好本次设计。 二 真空吸盘式气动机械手的总体设计 (一)真空吸盘式气动机械手设计的主要技术参数 设计一套真空吸盘式气动机械手,它采用圆柱坐标型的运 动形式,气压传动,PLC 系统控制。功能原理先进,动作可靠,结构合理,安全经济,满足生产要求,主要技术参数见表 2.1: 表 2.1 主要技术参数 吸盘吸持力 2kg 运动形式 圆柱坐标 手臂伸缩行程范围 0-300mm 手臂升降行程范围 0-200mm 手臂回转行程范围 0-180 定位方式 定位块 控制方式 点位式、 PLC控制 驱动方式 气压传动系统 自由度数 3 5 (二)真空吸盘式气动机械手工作原理分析 真空吸盘式气动机械手功能原理如图 2.1 所示 图 2.1 功能原理图 真空吸盘工作原理: 真空的产生可以是由电动机、真空泵以及各种真空器件所组成的真空系统来提供,也可以由压缩空气通过真空发生器所产生的二次真空来提供。前者需要配置独立的真空系统,而后者可以利用一般生产过程中已有的空气压缩系统。因此,特别在各种包装作业过程中,利用二次真空方法显得十分方便、经济。 真空发生器的原理是:压缩空气通过收缩的喷嘴后,从喷嘴喷射出的高速气流卷吸周围的静止流体和它一起向 前流动,从而在接受室形成负压,诱导二次真空。这样的真空系统,尤其对于不需要大流量真空的工况条件更显出它的优越性。用真空吸盘来抓取物体,可以根据物体的不同形状来实现任意角度的传递。以下将从两种特殊位置,即水平和垂直两个方向,对真空吸盘的受力进行动态分析 。 (三)真空吸盘式气动机械手工艺方案 设计一套真空吸盘式气动机械手,它采用圆柱坐标型的运动形式,气压传动,PLC系统控制。功能原理先进,动作可靠,结构合理,安全经济,满足生产要求。 主要技术参数:吸持力 2kg;自由度数为 3;运动形式为圆柱坐标;手臂伸缩 行程范围 0-300mm,手臂升降行程范围 0-200mm;手臂回转行程范围 0-180;定位方式为定位块;控制方式为点位式、 PLC控制;驱动方式为气压传动系统。 机械手的动作循环(工件平放):真空吸盘吸取工件 -大臂上升 -大臂回转 -手臂 6 延伸 -真空吸盘放下工件 -手臂收缩 -大臂反转 -大臂下降。 (四)真空吸盘式气动机械手方案设计 ( 1) 对于真空吸盘式气动的机械手,其工件的运动只需较少的自由度就能完成。气液联合控制和电液联合控制则使系统和结构上很复杂,故采取气压传动方式。 ( 2) 本机械手是专用自动机械手,选择智能控制方式中 的 PLC程序控制方式,这样可以使机械手的结构更加紧凑和完美。 ( 3) 本机械手的执行系统是手部机构。手部机构形式多样,但综合其总体构型,可分为:气吸式、电磁式和钳爪式 3种。根据本组合机床加工工件的特征,选择气吸式(真空吸盘式)手部结构。 ( 4)常见的工业机械手根据手臂的动作形态 ,按坐标形式大致可以分为以下 4种 : 直角坐标型机械手、圆柱坐标型机械手、球坐标 (极坐标 )型机械手、多关节型机机械手。其中圆柱坐标型机械手结构简单紧凑 ,定位精度较高 ,占地面积小,且根据本机械手坐标形式分析分析本机械手臂的运动形式及其组合情况,采 用圆柱坐标形式。因此方案确定机械手采用气压传动方式, PLC控制,真空吸盘式手部结构,圆柱坐标形式。 三 真空元件的设计及参数计算 (一)真空吸盘吸持工件的动力学分析 在产品包装、物体传输和机械装配等自动作业线上 ,使用真空吸盘来抓取物体的案例越来越多。柔而有弹性的吸盘可以很方便地实现诸如工件的吸持、脱开、传递等搬运功能 ,并确保不损坏其作用之对象。而吸持力靠真空系统维持 ,真空的产生可以是由电动机、真空泵以及各种真空器件所组成的真空系统来提供,也可以由压缩空气通过真空发生器所产生的二次真空来提供。前者 需要配置独力的真空系统 ,而后者可以利用一般生产过程中已有的空气压缩系统。因此 ,特别在各种包装作业过程中 ,利用二次真空方法显得十分方便、经济。真空发生器的原理是 压空气通过收缩的喷腾后 ,从喷嘴喷射出的高速气流卷吸周围的静止流体和它一起向前流动 ,从而在接受室形成负压 ,诱导二次真空。这样的真空系统 ,尤其对于不需要大流量真空的工况条件更显出它的优越性。真空发生器的结构及参数设计 ,可以根据需的真空度设计出所需的真空发生器。用真空吸盘来抓取物体 ,可以根据物体的不同形状实现任意角度的传递。 7 在此次 设计中,工件平放;故从水平方向对真空吸盘的受力分析进行动态分析。如图 3.1所示为真空吸盘用于水平位置工作时的安装方位。在图 3.1吸盘水平安装时 ,除了要吸持住工件负载外 ,还应该考虑吸盘移动时因工件的惯性力对吸力的影响。 图 3.1 真空吸盘的安装位置 (二)真空吸盘的选取 为了确保真空吸盘能完成给定的任务 ,需考虑一定的安全系数 ,根据理论和实践经验 ,真空吸盘的安全系数 N一般取 2.5,因此 ,许用提升重量 = 理论提升重量 /N=垂直提升力 /N 表 3.1 吸盘直径、面积、垂直提升力参数表 吸盘垂直提升力( N) 吸盘直径 D(mm) 10 13 16 20 25 32 40 50 吸持面积( cm) 0.785 1.33 2.01 3.14 4.91 8.04 12.6 19.6 吸盘垂直提升力( N)( -0.04MPa) 3.14 5.32 8.04 12.56 19.64 32.16 50.4 78.4 由上表可知,当工件重量为 2kg时,许用提升重量为 19.6N,欲使安全系数达到要求,只需满足 2 . 5垂 直 提 升 力许 用 提 升 重 量 ( 3.1) 8 即可,由表 3.1 选取吸盘直径为 40mm即可满足 考虑到吸附物的可吸附尺寸(面),所选的吸盘直径应设定为大于所需吸盘直径( D)因吸盘在吸附时会变形,吸盘的外径将增加 10%左右。 因为真空压力会使吸盘变形,所以吸附面积要比吸盘直径小。变形度根据吸盘的材质,形状,橡胶的硬度而有区别,因此,在计算得出吸盘直径时需留出余量。安全系数中包括变形部分。 吸盘直径虽表示吸盘的外径,但利用真空压力吸附物体时,因真空压会使橡胶变形,吸附面积也会随之缩小。缩小后的面积即称为有效吸附 面积,此时的吸盘直径即称为有效吸盘直径。 根据真空压力,吸盘橡胶的厚度以及与吸附物的摩擦系数等不同,有效吸盘直径也会有差异,一般情况可预估会缩小 10%。 综合上述,所选吸盘参数为: 吸盘直径 D=40mm, 吸盘吸持面积 A=12.6,吸盘个数 n=1,真空压力 P=0.04MPa。 (三)真空发生器设计 真空发生器用于产生真空,结构简单,体积小,无可动机械部件,安装和使用都很方便,因此应用很广泛,真空发生器产生的真空度可达到 88kpa,真空发生器的工作原理如图 3.2 所示。它是由先收缩后扩张的拉瓦尔喷管 1、负 压腔 2、和接收管 3等组成,有供气口、排气口和真空口,当供气口的供气压力高于一定值后,喷管射出的超声速射流。由于气体的粘性,高速射流卷吸走负压腔内的气体,使该腔形成很低的真空度,在真空口 A处接上真空吸盘,靠真空压力和吸盘吸取物体。 9 图 3.2 真空发生器的结构原理图 真空发生器的结构简单,无可动机械部件,故使用寿命长。 真空发生器的耗气量是指供给拉伐尔喷管的流量,它不但由喷嘴的直径决定,还与供气压力有关。同意喷嘴直径,其耗气量随供气压力的增加而增加,如图 3.3所示。喷嘴直径是选择真空发生器的主要依据。喷起直 径越大,抽吸流量和耗气量就越大,真空度越低;喷嘴直径越小,抽吸流量和耗气量越小,真空度越高。 图 3.3 真空发生器耗气量与工作压力的关系 图 3.4 所示为真空度特性曲线。由图可知,真空度存在最大值 Pzmax,当超过最大值后,即使增加供气压力,真空度不但没有增加反而下降。实际使用时,建议真空度选为( 63%-95%) Pzmax。 10 图 3.4 真空发生器耗气量与工作压力的关系 在真空吸盘的选取时,已确定真空压力为 0.04Mpa,由图 3.3、 3.4 可得,该真空发生器耗气量和真空度分别取 5L/min, -0.002Mpa。 (四)其他元器件的选用 一个完整的真空吸附系统还包括真空过滤器 、 供给阀 、 破坏阀等 , 真空过滤器的选择 ZFB-200-06 型, 流量是 30L/min, 大于真空发生器的最大流量 24L/min, 满足需求, 真空节流阀选择 KLA 系列单向节流 KLA-L6,公称通径是 6mm,有效截流面大于 5mm2,泄露量小于 50cm3/min,单向阀开启压力为 0.05Mpa。 供给阀设置在压力管路中,选择一般的换向阀 AB31、 AB41系列多流体二位二通直动截止电磁换向阀,型号: AB310-1-6,公称 通径 5mm, AB接管螺纹 ZG1/8,有效截面面积 15.3mm2,有效截面面积大于真空发生器喷嘴儿面积的 4倍,供气口得连接管内径大于喷嘴直径的 4倍,减少供给回路的压力损失。 真空换向阀设置在真空回路中,必须选择能用在真空条件下的换向阀,真空换向阀要求不泄露,故选择用截止式和导膜片式结构比较理想,选择 09270、 09550系列多种流体二位二通先导膜片式电磁阀,型号: 0927000,接管螺纹 1/4in,通径 8mm,换向频率大于 0.5HZ。 四 机械手控制系统设计 11 (一) 机械手电气控制系统的概述 应用 PLC作为 电气控制,可以简化控制线路,降低故障率,实现机械手多种动作线路。一般机械手有手动和自动控制之分,手动控制主要用来硬件调试。自动控制中也分单步、单周期、周期循环等工作状态。其控制要求为:按下启动按钮,检测气动机械手是否处于原位,如果不是,按下复位按钮回到原位,如果是,则检测气动机械手处于何种工作状态下,单步意味着每按下一次启动按钮,机械手执行一步动作;单周期指执行一次动作循环,最后回到初始位置;周期循环是机械手重复不断的执行动作,直到按下复位或停止按钮为止。 根据机械手的硬件结构, PLC输入信号有:工作状态选 择开关输入、启动停止按钮输入、磁性接近开关信号输入、手动开关输入及程序选择开关输入共 22个输入点;机械手的输出信号有:驱动 4个气缸的电磁阀线圈 4个,控制真空吸盘的电磁阀线圈 2个,原点指示灯 1个,共七个输出点。选择输入点大于 22点,输出大于 7点的 PLC。 机械手的定位系统采取定位块定位,在设定位置装置定位块。并为了达到缓冲的目的,在满足工作要求的前提下,设计尽量轻的零部件。比如将某些铸钢件改用铝合金制造,或者将一些实心的零件做成空心的,以此来减轻总质量。采取 PLC程序控制,控制系统选择三菱公司的 FX1S系列的 PLC控制器。另外机械手还可进行回零等,其有手动控制方式和全自动控制。 自动生产线机械手的主要参数 :吸持力 2kg;自由度数为 3;运动形式为圆柱坐标;手臂伸缩最大行程 300mm;手臂升降最大行程为 200mm;手臂回转最大行程 180度,手臂升降速度为 150mm/s;大臂回转角度范围 0-90,大臂回转速度为 135 /s;定位方式为定位块;定位精度为;控制方式为点位式、 PLC控制;驱动方式为气压系统。 (二)机械手电气控制程序 表 4.1机械手自动控制程序 步序号 指令 数据 步序号 指令 数据 步序号 指令 数 据 1 LD X400 17 AND T453 K1.5 2 ANI X401 18 ANI T454 31 OUT Y439 3 ANI T450 19 OUT Y435 32 OUT T550 4 OUT Y430 20 OUT T454 K2 5 OUT T450 K1.5 33 AND T550 K2 21 AND T454 34 ANI T551 12 6 AND T450 22 ANI T455 35 OUT Y530 7 ANI T451 23 OUT Y436 36 OUT T551 8 OUT Y432 24 OUT T455 K1.5 9 OUT T451 K2 37 AND X500 K0.5 25 AND T455 38 ANI T552 10 AND T451 26 ANI T456 39 OUT Y531 11 ANI T452 27 OUT Y437 40 OUT Y532 13 OUT Y433 28 OUT T456 41 OUT T552 14 OUT T452 K0.5 K3 K1.5 27 AND T456 15 OUT Y434 28 ANI T457 16 OUT T453 29 OUT Y438 K2 30 OUT T457 (三)机械手电气控制系统图 1 自动控制系统图 13 图 4.1 机械手自动控制系统图 上图为机械手自控控制系统图,他的指令采用 FX1S的专用 PLC控制器控制,他的工作顺序是按照上图中大臂下降开始直至最后一次大臂回转为完成一个完整的工作周期,每个工作段所用的时间在上图均已标明,从系统启动到结束程序,除非系统受到X500停车指令,否则系统均通过各个时间控制器来完成精确的控制。 2 手动控制系统图 14 图 4.2 机械手手动控制系统图 上图为本机械手在进行试运行和系统检查以及手动控制完成所需动作而设计的手动控制系统,工作流程在上图已经清晰标明 。 3 机械手自动方式状态图 机械手自动方式状态图如图 4.3所示,其中 S2是自动方式的初始状态。状态转移开始辅助继电器 M8041,原点位置条件辅助继电器 M8044的状态都是在初始化程序中设定的,在自动系统程序运行中不再改变。 15 图 4.3 机械手自动方式状态图 4 机械手独立控制面板设计图 机械手控制独立控制面板如图 4.4所示 16 图 4.4 机械手控制面板 面板中的启动和急停按钮与 PLC的运行程序无关,这两个按钮是用来接通或断开PLC外部负载的电源。本机械手由手动和自动两种运行状态的控制系统,所以应能根据所设置的运行方式自动进入,这就要求系统应能自动设定与各个运行方式相应的初始状态,其相应的输入设定按钮在图 4.4已经标定。 五 机械手气压传动系统设计 (一)机械手的工作原理分析 真空吸盘式气动机械手是自动化流水生产线中广泛应用的工件搬运机械设备,它是流水线 作业中不可或缺的运输单元。气动机械手要求气压系统完成的主要动作是(工件平放):吸持工件 -大臂上升 200mm-大臂回转 180 -手臂延伸 300mm-放下工件 -手臂收缩 300mm-大臂反转 180 -大臂下降 200mm。整个周期要完成所有动作必须由 3个气压缸协调动作才能做到 。 (二)气压传动系统工作原理图 图 5.1 所示为该机械手的气压传动系统工作原理图 17 图 5.1 机械手的气压传动系统工作原理图 1-气源 2-空气过滤器 5-单向阀 6、 9-两位二通阀 7-先导型阀 8-三位四通电磁阀 10-节流阀 11-调速阀其余元件已在上图说明。 (三)各缸运动过程分析 1、吸持工件 在整机启动的情况下,气体流经单向阀,然后 PLC 控制程序指令控制电磁铁 3DT通电吸合,此时此二位四通电磁阀处于右位,气体直接流进右腔,从而拉动滑槽杠杆式结构吸持工件。 2、大臂上升 PLC指令控制电磁铁 4DT 通电吸合。气体经单向阀 5,流经图 5.1所示从左到右第二个三位四通电磁阀左位,然后流经节流阀和单向阀构成的调速阀,接着流向减压阀和单向阀构 成的复合阀,然后直接流向大臂升降气压缸的下腔,从而推动机械手做上升运动。 3、大臂回转 PLC 指令控制电磁铁 6DT通电吸合。泵 3供油经单向阀 5,流经图5.1所示从左到右第一个三位四通电磁阀左位,然后流经节流阀和单向阀构成的调速阀,然后直接流向大臂回转气压缸,从而推动机械手大臂做左右摆动运动。 4、手臂延伸 PLC 指令控制电磁铁 1DT通电吸合。泵 3供油经单向阀 5,流经图4.1所示从左到右第三个三位四通电磁阀右位,然后流经节流阀和单向阀构成的调速阀,然后直接流向手臂伸缩气压缸,从而推动机械手手臂做伸缩运动。 18 5、放松工件 气体流经单向阀,然后 PLC 控制程序指令控制电磁铁 3DT断电跳开,此时此二位四通电磁阀处于左位,气体直接流左腔,从而放松工件。 6、手臂收缩 PLC 指令控制电磁铁 2DT通电吸合气体经单向阀 5,流经图 5.1所示从左到右第三个三位四通电磁阀左位,然后直接流向手臂伸缩气压缸,从而推动机械手手臂做收缩运动。 7、大臂回转 PLC 指令控制电磁铁 7DT通电吸合。气体经单向阀 5,流经图 5.1所示从左到右第一个三位四通电磁阀左位,接着气体流经节流阀和单向阀构成的调速阀,然后直接流向大臂回转气压缸,从而推 动机械手大臂做左右摆动运动。 8、大臂下降 PLC 指令控制电磁铁 5DT通电吸合。气体经单向阀 5,流经图 5.1所示从左到右第二个三位四通电磁阀左位,然后流经节流阀和单向阀构成的调速阀,然后直接流向大臂升降气压缸的上腔,从而推动机械手做下降运动。 至此就完成整个机械手的循环运动,如果此时接到停止的指令,则 10DT和 11DT同时通电,电磁铁将电磁换向阀到上位,此时气压系统卸压,同时上面的各个电磁铁同时断电回到默认位置,完成卸荷。电磁铁动作顺序表如下: 19 六 机械手臂部的设计及参数计算 手臂部件是 机械手的主要握持部件。它的作用是支撑腕部和手部(包括工件或工具),并带动它们作空间运动。手臂运动应该包括 3个运动:伸缩、翻转和升降。 臂部运动的目的:把手部送到空间运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部应该具备 3 个自由度才能满足基本要求,既手臂伸缩、左右回转、和升降运动。手臂的各种运动通常用驱动机构和各种传动机构来实现,从臂部的受力情况分析,它在工作中即直接承受腕部、手部、和工件的静、动载荷,而且自身运动较多。因此,它的结构、工作范围、灵活性等直接影响到 机械手的工作性能。 由于本设计需要,手部、腕部无需设计,只需设计手臂即可。 (一) 臂部设计的基本要求 臂部应承载能力大、刚度好、自重轻:根据受力情况,合理选择截面形状和轮廓尺寸; 提高支撑刚度和合理选择支撑点的距离;合理布置作用力的位置和方向;注意简化结构;提高配合精度。 臂部运动速度要高,惯性要小:机械手手部的运动速度是机械手的主要参数之一,它反映机械手的生产水平。对于高速度运动的机械手,其最大移动速度设计在 10001500mm/s,最大回转角速度设计在 180 /s内,大部分平均移动速度为 1000mm/s,平均回转角速度在 90 /s。在速度和回转角速度一定的情况下,减小自身重量是减小惯性的最有效,最直接的办法,因此,机械手臂部要尽可能的轻。 手臂动作应该灵活:为减少手臂运动之间的摩擦阻力,尽可能用滚动摩擦代替滑动摩擦。对于悬臂式的机械手,其传动件、导向件和定位件布置合理,使手臂运动尽可能平衡,以减少对升降支撑轴线的偏心力矩,特别要防止发生机构卡死(自锁现象)。为此,必须计算使之满足不自锁的条件。 总结:以上要求是相互制约的,应该综合考虑这些问题,只有这样,才能设计出完美的、性能良好的机械手。 (二)手臂的典型机构以及结构的选择 20 1 手臂的典型运动机构 常见的手臂伸缩机构有以下几种: ( 1) 双导杆手臂伸缩机构。 ( 2) 手臂的典型运动形式有:直线运动,如手臂的伸缩,升降和横向移动;回转运动,如手臂的左右摆动,上下摆动;符合运动,如直线运动和回转运动组合,两直线运动的双层气压缸空心结构。 ( 3) 双活塞杆气压缸结构。 ( 4) 活塞杆和齿轮齿条机构。 2 手臂运动机构的选择 通过以上,综合考虑,本设计选择双导杆伸缩机构,使用气压驱动 ,气压缸选取双作用气压缸。 (三)手臂直线运动的驱动力计算 先进行粗略的估算,或类比同类结构 ,根据运动参数初步确定有关机构的主要尺寸,再进行校核计算,修正设计。如此反复,绘出最终的结构。 做水平伸缩直线运动的气压缸的驱动力根据气压缸运动时所克服的摩擦、惯性等几个方面的阻力,来确定来确定气压缸所需要的驱动力。气压压缸活塞的驱动力的计算。 F F F F F 回摩 密 惯 ( 6.1) 摩擦力的计算 不同的配置和不同的导向截面形状,其摩擦阻力是不同的,要根据具体情况进行估算。下图是机械手 的手臂示意图,本设计是双导向杆,导向杆对称配置在伸缩缸两侧。 21 由于导向杆对称配置,两导向杆受力均衡,可按一个导向杆计算。 0 BM bG L aF总 得 b GLF a 总 0YF baG F F总 得 a LaFG a 总 ( 6.2) a b a bF F F F F 摩 摩摩 ( 6.3) 2 LaFG a 总摩 ( 6.4) 式中 G总 参与运动的零部件所受的总重力(含工件)( N); L 手臂与运动的零部件的总重量的重心到导向支撑的前端的距离( mm) a 导向支撑的长度( mm) ; 当量摩擦系数,其值与导向支撑的截面有关。 对于圆柱面: uuu 57.127.124 摩擦系数,对于静摩擦且无润滑时: 钢对青铜:取 u=0.1 0.15 钢对铸铁:取 u=0.18 0.3 计算: 导向杆的材料选择钢,导向支撑选择铸铁 0 . 2 0 1 . 5 0 . 3 , 400N总G,L=0.8-0.2=0.6m,导向支撑 a设计为 0.1m 将有关数据代入进行计算 1 5 6 0 N0 . 1 0 . 10 . 62400a2LGF 总摩 22 手臂惯性力的计算 本设计要求手臂平动是 min/15 m ,在计算惯性力的时候 ,设置启动时间0.2ts ,启动速度 V=V=0.083mS , GvFgt总惯 ( 6.5) GvFgt总惯 N94.162.08.9083.0400 不同的密封圈其摩擦阻力不同,在手臂设计中,采用 O 型密封,当气压缸工作压力小于 10Mpa。气缸处密封的总摩擦阻力可以近似为: 0.03FF封。 经过以上分析计算最后计算出气压缸的驱动力: = 0 . 0 3 = 1 7 0 0F F F F N摩 惯 (四)气 压缸工作压力和结构的确定 经过上面的计算,确定了气压缸的驱动力 F=1700N,选择气压缸的工作压力P=0.04MPa ( 1) 确定气压缸的结构尺寸: 气压缸内径的计算,如图 6.2所示 图 6.2 双作用气压缸示意图 当气进入无杆腔, 21 4DF F p 当气进入有杆腔中, 23 222 4DdF F p 气压缸的有效面积: 1FS p 故 114 1 . 1 3FFDpp (无杆腔) (6.6) 214 FDdp (有杆腔) (6.7) F=1625.7N, 1p = 62 10 pa ,选择机械效率 0.95 将有关数据代入: mpFD 02925.010295.07.162513.1461 选择标准气压缸内径系列及机械的工作范围冗余设计,选择 D=40mm. ( 2) 气压缸外径的设计 根据装配等因素,考虑到气压缸的臂厚在 7mm,所以该气压缸的外径为 54mm. ( 3) 活塞杆的计 算校核 活塞杆的尺寸要满足活塞(或气压缸)运动的要求和强度要求。对于杆长 L大于直径 d的 15倍以上,按拉、压强度计算: 24Fd ( 6.8) 设计中活塞杆取材料为 45 刚,故 1 0 0 1 2 0 M pa ,活塞直径 d=20mm,现在进行校核。 6221010013.2602.047.16254 M P adF 结论: 活塞杆的强度足够。 (五)气压缸的尺寸参数的确定 根据夹紧力和驱动力的计算,初步确定了气压缸的内径为 40mm,行程为 500mm;下面要确定气压缸的缸筒长度 L。 缸筒长度 L 由最大工作行程长度加上各种结构需要 24 来确定,即: L=l+B+A+M+C ( 6.9) 式中: l 为活塞的最大工作行程; B 为活塞宽度,一般为 (0.6-1)D;A 为活塞杆导向长度,取 (0.6-1.5)D;M 为活塞杆密封长度,由密封方式定; C 为其他长度,在此由于定位方式为定位块式,需要保留一定的缸体冗余长度作为缓冲,以免在运动过程中损伤到缸体,所以 C 取 60mm。一般缸筒的长度最好不超过内径的 20 倍。另外,气压缸的结构尺寸还有最小导向长度 H。 所以: L=500+0.8D+D+0.9D+C=668mm 气压缸缸底厚度计算,本气压缸选用平行缸底,且缸底无气孔时 ypDh 433.0,其中 h为缸底厚度; D 为气压缸内径;yp为实验压力; 为缸底材料的许用应力,气压缸选用缸体材料为 45号钢, MPa100 。 mpDh y 366 101.110100105.2016.0433.0433.0 , 所以选取厚度 mmh 7 。 七 齿轮齿条机构 齿轮齿条在传动过程中会有自己所独有的运动特点 :齿轮传动用来传递任意两轴间的运动和动力,其圆周速度可达到 300m/s,传递 功率可达 105KW,齿轮直径可从不到 1mm到 150m以上,是现代机械中应用最广的一种机械传动。 齿轮齿条传动与带传动相比主要有以下优点: ( 1)传递动力大、效齿轮传动的特点。齿轮传动用来传递任意两轴间的运动和动力,其圆周速度可达到 300m/s,传递功率可达 105KW,齿轮直径可从不到 1mm到 150m以上,是现代机械中应用最广的一种机械传动。 ( 2) 寿命长,工作平稳,可靠性高; ( 3) 能保证恒定的传动比,能传递任意夹角两轴间的运动。 齿轮传动与带传动相比主要缺点有: ( 1)制 造、安装精度要求较高,因而成本也较高; ( 2)不宜作远距离传动。 25 由于齿轮齿条传动,因此传动比为 1。机身重量不大,选取输入功率为 0.8Kw,转速为 12r/min。齿轮齿条参数设计如下: ( 1) 材料选择 由机械设计(第八版)表 10-1 选择齿轮材料为 Q235, 齿 齿面硬度为 240HBS;齿条材料味 Q235, 齿条 齿面硬度为 280HBS,。 1) 齿轮齿数 1 20z ,齿条 齿数 2 1 2 0 2 0z 按齿面接触强度设计由设计计算公式进行试算 ,即 31 3 21 ( ) 2t H Et dHK T u Z Zd u ( 7.1) (2) 确定公式内的各计算数值 1) 试选载荷系数 1.6tK 2) 计算齿轮的转矩 9 5 . 5 1 0 5 9 5 . 5 1 0 5 0 . 8 63666612PT N m mn 3)选齿宽系数 0.8d 4)由机械设计(第八版)图 10-30选取区域系数 2.433HZ 5)由机械 设计(第八版)图 10-26查得 1 0.78 , 2 0.89 ,则 12 1 .6 7 6)由机械设计(第八版)表 10-6查得材料的弹性影响系数 1 8 9 . 8 0 . 5EZ M P a 7) 由机械设计(第八版)图 10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 lim 1 600H M P a ,大齿轮的接触疲劳强度极限 lim 2 550H M P a 由机 械设计(第八版)图 10-19取接触疲劳寿命系数120 . 9 2 , 0 . 8 8H N H NKK 8)计算接触疲劳许用应力 取失效概率为 1%,安全系数 S=1,得 1 l i m 11 0 . 9 2 6 0 0 5 5 2H N HH K M P aS 2 l i m 22 0 . 8 8 5 5 0 4 8 4H N HH K M P aS ( 3)计算 1)试算齿轮分度圆直径 1td ,由计算公式得 26 1 3 21 ( ) 2t H Et dHK T u Z Zd u 3 2 1 . 6 6 3 6 6 6 6 2 2 . 4 3 3 1 8 9 . 8( ) 2 6 4 . 81 1 . 6 7 1 5 1 8 mm 2)计算圆周速度 v 13 6 4 . 8 1 2 0 . 0 4 /6 0 1 0 0 0 6 0 1 0 0 0tdnv m s 3)计算齿宽 b及模数 ntm 1 1 6 4 . 8 6 4 . 8dtb d m m 116 4 . 8 3 . 2 420tnt dm m mZ 2 . 2 5 2 . 2 5 3 . 2 4 7 . 2 9nth m m m 6 4 .8 8 .8 97 .2 9bh 4)计算载荷系数 根据 0.04 /v m s , 8级精度,由机械设计(第八版)图 10-8查得动载系数 1.02vK 由机械设计(第八版)表 10-3查得 1 .4HFKK 由机械设计(第八版)表 10-2查得使用系数 1AK 由机械设计(第八版)表 10-13查得 1.35FK 由机械设计(第八版)表 10-4查得 1.452HK 接触强度载荷系数 1 1 . 0 2 1 . 4 1 . 4 5 2 2 . 0 7A v H HK K K K K 5)按实际的载荷系数校正所算得的分度圆直 径,得 11 2 . 0 73 36 4 . 8 6 9 . 41 . 6t tKd d m mK 6)计算模数 nm 116 9 . 4 3 . 4 720n dm m mZ 27 7)按齿根弯曲强度设计 由式 21 a a3nd 1 a2 c o smzFSFK T Y Y Y (7.2) ( 4)确定计算参数 1)确定载荷系数 1 1 . 0 2 1 . 4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市直部门工作考核方案(2篇)
- 圣诞节活动主题方案模版(二篇)
- 幼儿园小班语言领域教学方案例文(二篇)
- 民营企业档案整治暂行方案范文(2篇)
- 建筑工程质量通病防治措施方案
- 电商销售方案(2篇)
- 全面推行行政指导工作方案(3篇)
- 畜牧工作考核实施方案范文(2篇)
- 外墙脚手架施工方案解析
- 楼地面防辐射施工方案
- 你来比划我来猜词语(经典前沿词汇版)
- 2015装载机司机理论竞赛试题库
- 2023年中考语文备考之记叙文阅读训练指导:《一生都在成长》
- 医学免疫学病例分析题,可怜的老张
- 思想道德与法治智慧树知到答案章节测试2023年聊城大学
- 肿瘤免疫治疗相关不良反应管理
- 生产加工工艺流程及加工工艺要求
- GB/T 702-2017热轧钢棒尺寸、外形、重量及允许偏差
- 500kw 新能源储能变流器技术协议书
- 领导干部带班记录
- 《故都的秋》《荷塘月色》联读课件15张-统编版高中语文必修上册
评论
0/150
提交评论