




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.1函数的单调性,1.3函数的基本性质,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数。,1.定义:一般的,设函数f(x)的定义域为I:,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是减函数。,知识梳理:,2.判断函数单调性的方法步骤,1任取x1,x2D,且x1x2;2作差f(x1)f(x2);3变形(通常是因式分解和配方);4定号(即判断差f(x1)f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性),利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:,题型探究,类型一求单调区间并判断单调性,例1.函数y|x22x3|的图象如图所示,试写出它的单调区间,并指出单调性,解y|x22x3|的单调区间有(,1,1,1,1,3,3,),其中单调递减区间是(,1,1,3;单调递增区间是1,1,3,),反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“”,可以用“和”来表示;在单调区间D上函数要么是增函数,要么是减函数,不能二者兼有,类型二证明单调性,例2.求证:函数f(x)在1,)上是增函数,证明:设x1,x2是1,)上的任意实数,且1x1x2,,则f(x1)f(x2),1x1x2,x1x20,1x1x2,,即f(x1)f(x2)0,即f(x1)f(x2),函数f(x)在区间1,)上是增函数,反思与感悟运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x1,x2且x1x2的条件下,转化为确定f(x1)与f(x2)的大小,要牢记五大步骤:取值作差变形定号小结,类型三单调性的应用,命题角度1利用单调性求参数范围,例3已知函数f(x)x22ax3在区间1,2上单调,则实数a的取值范围为_,【解析】由于二次函数开口向上,故其增区间为a,),减区间为(,a,而f(x)在区间1,2上单调,所以1,2a,)或1,2(,a,即a1或a2.,(,12,),若函数是定义在R上的减函数,则a的取值范围为(),【解析】要使f(x)在R上是减函数,需满足:,A,反思与感悟分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超另外,函数在单调区间上的图象不一定是连续不断的,命题角度2用单调性解不等式,例4已知yf(x)在定义域(1,1)上是减函数,且f(1a)f(2a1),求a的取值范围,解f(1a)f(2a1)等价于,即所求a的取值范围是0a,解得0a,,反思与感悟若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;由f(x1),f(x2)的大小,可得x1,x2的大小,三达标检测,1.f(x)对任意两个不相等的实数a,b,总有,则必有()A函数f(x)先增后减B函数f(x)先减后增C函数f(x)是R上的增函数D函数f(x)是R上的减函数,C,2.若函数yf(x)的定义域为R,且为增函数,f(1a)f(2a1),则a的取值范围是。,【解析】yf(x)的定义域为R,且为增函数,又f(1a),,3.f(x)是定义在0,)上的减函数,则不等式f(x)f(2x8)的解集是_,4.求证函数f(x)在(0,)上是减函数,【解析】对于任意的x1,x2(0,),且x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025签订购房合同注意事项全面解析
- 人力资源服务平台合同样本
- 2025年秘鲁玛卡项目发展计划
- 房屋拆迁合同模板
- 担保公司四方借款合同
- 付款三方协议建筑合同样本
- 保修协议书范例
- 二零二五版勘探服务合同
- 教师聘任合同二零二五年
- 车辆展厅出租合同范例
- 19S406建筑排水管道安装-塑料管道
- KA-T 20.1-2024 非煤矿山建设项目安全设施设计编写提纲 第1部分:金属非金属地下矿山建设项目安全设施设计编写提纲
- 绿色生活实践
- (2024年)硫化氢安全培训课件
- 《聚焦超声治疗》课件
- 2023-2024学年高一下学期第一次月考(湘教版2019)地理试题(解析版)
- 妇科炎症介绍演示培训课件
- 如康家园管理制度
- 蓄水池工程施工工艺与技术措施
- 2022年4月自考00149国际贸易理论与实务试题及答案含评分标准
- 大数据驱动的药物研发
评论
0/150
提交评论