




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题四1. 复级数与都发散,则级数和发散.这个命题是否成立?为什么?答.不一定反例: 发散但收敛发散收敛.2. 下列复数项级数是否收敛,是绝对收敛还是条件收敛?(1) (2) (3) (4) (5) 解 (1) 因为发散,所以发散(2)发散 又因为所以发散(3) 发散,又因为收敛,所以不绝对收敛.(4) 因为所以级数不绝对收敛.又因为当n=2k时, 级数化为收敛当n=2k+1时, 级数化为也收敛所以原级数条件收敛(5) 其中 发散,收敛所以原级数发散.3.证明:若,且和收敛,则级数绝对收敛.证明:设因为和收敛所以收敛又因为,所以且当n充分大时, 所以收敛而收敛,收敛所以收敛,从而级数绝对收敛.4.讨论级数的敛散性解 因为部分和,所以,不存在.当而时(即),cosn和sinn都没有极限,所以也不收敛.故当和时, 收敛.5.幂级数能否在z=0处收敛而在z=3处发散.解: 设,则当时,级数收敛,时发散.若在z=0处收敛,则若在z=3处发散, 则显然矛盾,所以幂级数不能在z=0处收敛而在z=3处发散6.下列说法是否正确?为什么?(1)每一个幂级数在它的收敛圆周上处处收敛.(2) 每一个幂级数的和函数在它的收敛圆内可能有奇点.答: (1) 不正确,因为幂级数在它的收敛圆周上可能收敛,也可能发散.(2) 不正确,因为收敛的幂级数的和函数在收敛圆周内是解析的.7.若的收敛半径为R,求的收敛半径。解: 因为所以 8.证明:若幂级数的 系数满足,则(1)当时, (2) 当时, (3) 当时, 证明:考虑正项级数由于,若,由正项级数的根值判别法知,当,即,收敛。当,即,不能趋于零,级数发散.故收敛半径.当时, ,级数收敛且.若,对当充分大时,必有不能趋于零,级数发散.且9.求下列级数的收敛半径,并写出收敛圆周。(1) (2) (3) (4) 解: ()收敛圆周(2) 所以收敛圆周(3) 记 由比值法,有要级数收敛,则级数绝对收敛,收敛半径为所以收敛圆周(4) 记 所以时绝对收敛,收敛半径收敛圆周10.求下列级数的和函数.(1) (2) 解: (1)故收敛半径R=1,由逐项积分性质,有:所以于是有:(2) 令:故R=, 由逐项求导性质由此得到即有微分方程故有:,A, B待定。所以 11.设级数收敛,而发散,证明的收敛半径为1证明:因为级数收敛设若的收敛半径为1则现用反证法证明若则,有,即收敛,与条件矛盾。若则,从而在单位圆上等于,是收敛的,这与收敛半径的概念矛盾。综上述可知,必有,所以12.若在点处发散,证明级数对于所有满足点都发散.证明:不妨设当时,在处收敛则对,绝对收敛,则在点处收敛所以矛盾,从而在处发散.13.用直接法将函数在点处展开为泰勒级数,(到项),并指出其收敛半径.解:因为奇点为所以又于是,有展开式14.用直接法将函数在点处展开为泰勒级数,(到项)解:为的奇点,所以收敛半径又于是,在处的泰勒级数为 15.用间接法将下列函数展开为泰勒级数,并指出其收敛性.(1) 分别在和处 (2) 在处(3) 在处 (4) 在处 (5) 在处 解 (1)(2) (3) (4) (5)因为从沿负实轴不解析所以,收敛半径为R=116.为什么区域内解析且在区间取实数值的函数展开成的幂级数时,展开式的系数都是实数?答:因为当取实数值时,与的泰勒级数展开式是完全一致的,而在内,的展开式系数都是实数。所以在内,的幂级数展开式的系数是实数.17.求的以为中心的各个圆环域内的罗朗级数.解:函数有奇点与,有三个以为中心的圆环域,其罗朗级数.分别为:19.在内将展开成罗朗级数.解:令则而在内展开式为所以,代入可得20.有人做下列运算,并根据运算做出如下结果因为,所以有结果你认为正确吗?为什么?答:不正确,因为要求而要求所以,在不同区域内21.证明: 用z的幂表示的罗朗级数展开式中的系数为证明:因为和是的奇点,所以在内,的罗朗级数为其中其中C为内任一条绕原点的简单曲线.22. 是函数的孤立奇点吗?为什么?解: 因为的奇点有所以在的任意去心邻域,总包括奇点,当时,z=0。从而不是的孤立奇点.23.用级数展开法指出函数在处零点的级.解:故z=0为f(z)的15级零点24.判断是否为下列函数的孤立奇点,并确定奇点的类型:;解: 是的孤立奇点因为所以是的本性奇点.(2)因为所以是的可去奇点.25. 下列函数有些什么奇点?如果是极点,指出其点: 解: (1)所以是奇点,是二级极点.解: (2) 是奇点,是一级极点,0是二级极点.解: (3) 是的二级零点而是的一级零点, 是的一级零点所以是的二级极点, 是的一级极点.26. 判定下列各函数的什么奇点? 解: (1)当时, 所以, 是的可去奇点.(2)因为所以, 是的本性奇点.(3) 当时, 所以, 是的可去奇点.27. 函数在处有一个二级极点,但根据下面罗朗展开式:.我们得到“又是的本性奇点”,这两个结果哪一个是正确的?为什么?解: 不对, z=1是f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 户外广告亮化维修合同
- 防盗门销售合同样本
- 设备运维服务合同
- 三方商业物业转租合同
- 个人经营性贷款还款合同
- 生物质能源在生物塑料生产中的应用探索考核试卷
- 礼仪用品行业消费升级趋势考核试卷
- 森林改培与生态保护与生态保护与森林公园规划考核试卷
- 未成年人协议合同
- 摄影对公合同协议
- 磷酸铁及磷酸铁锂异物防控管理
- 2025火灾报警产品强制性产品认证实施细则
- 中考数学《数与式》专题训练(含答案)
- (新版)水利水电工程施工企业“三类人员”安全生产考核题库-(单选多选题库)
- 部编版小学二年级下册语文全册教案
- 2025年兴业银行股份有限公司招聘笔试参考题库含答案解析
- 七年级语文下册(统编版2024)-【新教材解读】义务教育教材内容解读课件
- 冷库工程施工组织设计方案
- 网约配送员培训课件
- 五星出东方利中国-新疆文化网
- 《当前国际安全形势》课件
评论
0/150
提交评论