已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考地理复习第八章圆锥曲线方程一椭圆【考点阐述】椭圆及其标准方程椭圆的简单几何性质了解椭圆的参数方程【考试要求】(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程【考题分类】(一)选择题(共6题)1.(湖北卷理10文10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P轨进入以月球球心F为一个焦点的椭圆轨道绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道绕月飞行,若用12c和22c分别表示椭轨道和的焦距,用12a和22a分别表示椭圆轨道和的长轴的长,给出下列式子:1122acac;1122acac;1212caac;11ca22ca.其中正确式子的序号是A.B.C.D.解:由焦点到顶点的距离可知正确,由椭圆的离心率知正确,故应选2.(江西卷理7文7)已知1F、2F是椭圆的两个焦点,满足120MFMF的点M总在椭圆内部,则椭圆离心率的取值范围是A(0,1)B1(0,2C2(0,)2D2,1)2解:C.由题知,垂足的轨迹为以焦距为直径的圆,则2222212cbcbace又(0,1)e,所以1(0,)2e3.(上海卷文12)设p是椭圆2212516xy上的点若12FF,是椭圆的两个焦点,则12PFPF等于()A4B5C8D10【答案】D【解析】由椭圆的第一定义知12210.PFPFa高考地理复习4.(天津卷理5)设椭圆1112222mmymx上一点P到其左焦点的距离为3,到右焦点的距离为1,则P点到右准线的距离为(A)6(B)2(C)21(D)772解析:由椭圆第一定义知2a,所以24m,椭圆方程为22111432xyed所以2d,选B5.(天津卷文7)设椭圆221(00)xymnmn,的右焦点与抛物线28yx的焦点相同,离心率为12,则此椭圆的方程为()A2211216xyB2211612xyC2214864xyD2216448xy解析:抛物线的焦点为(2,0),椭圆焦点在x轴上,排除A、C,由12e排除D,选B6.(上海春卷14)已知椭圆221102xymm,长轴在y轴上.若焦距为4,则m等于()(A)4.(B)5.(C)7.(D)8.解析:由题意得m-210-m且10-m0,于是6m10,再有(m-2)-(10-m)=22,得m=8。(二)填空题(共7题)1.(海南宁夏卷文15)过椭圆22154xy的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则OAB的面积为_【标准答案】:53【试题解析】:将椭圆与直线方程联立:224520021xyyx,得交点540,2,33AB;故121145122233OABSOFyy;【高考考点】直线与椭圆的位置关系【易错点】:不会灵活地将三角形面积分解而导致运算较繁。【全品备考提示】:对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的位置关系只要掌握直线与椭圆的相关知识即可。高考地理复习2.(湖南卷理12)已知椭圆221xyab(ab0)的右焦点为F,右准线为l,离心率e=5.5过顶点A(0,b)作AMl,垂足为M,则直线FM的斜率等于.【答案】12【解析】2(,),aMbc55,2,5eacbc201.2FMbckabcc3.(江苏卷12)在平面直角坐标系中,椭圆221(0)xyabab的焦距为2,以O为圆心,a为半径的圆,过点2(,0)ac作圆的两切线互相垂直,则离心率e=。【解析】设切线PA、PB互相垂直,又半径OA垂直于PA,所以OAP是等腰直角三角形,故22aac,解得22cea【答案】224.(全国卷理15)在ABC中,ABBC,7cos18B若以AB,为焦点的椭圆经过点C,则该椭圆的离心率e答案:38.设1ABBC,7cos18B则222252cos9ACABBCABBCB53AC,582321,21,3328cacea.5.(全国卷文15)在ABC中,90A,3tan4B若以AB,为焦点的椭圆经过点C,则该椭圆的离心率eAB4c112c=4,c=2,2a=3+5=8a=4,e=a22解析:本题主要考查了椭圆的定义及基本量的求法,令,则答案为。6.(上海卷理10)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为1、2,那么船只已进入该浅水区的判别条件是高考地理复习【答案】1122cotcot2hha【解析】依题意,12|2MFMFa1122cotcot2hha;7.(浙江卷理12文12)已知21FF、为椭圆192522yx的两个焦点,过1F的直线交椭圆于A、B两点,若1222BFAF,则AB=_。解析:本小题主要考查椭圆的第一定义的应用。依题直线AB过椭圆的左焦点1F,在2FAB中,22|420FAFBABa,又22|12FAFB,|8.AB(三)解答题(共18题)1.(安徽卷理22)设椭圆22:1(0)xyCabab过点(2,1)M,且着焦点为1(2,0)F()求椭圆C的方程;()当过点(4,1)P的动直线l与椭圆C相交与两不同点,AB时,在线段AB上取点Q,满足APQBAQPB,证明:点Q总在某定直线上解(1)由题意:2222222211cabcab,解得224,2ab,所求椭圆方程为22142xy(2)方法一设点Q、A、B的坐标分别为1122(,),(,),(,)xyxyxy。由题设知,APPBAQQB均不为零,记APAQPBQB,则0且1又A,P,B,Q四点共线,从而,APPBAQQB于是1241xx,1211yy121xxx,121yyy从而22212241xxx,(1)2221221yyy,(2)高考地理复习又点A、B在椭圆C上,即221124,(3)xy2224,(4)xy(1)+(2)2并结合(3),(4)得424xy即点(,)Qxy总在定直线220xy上方法二设点1122(,),(,),(,)QxyAxyBxy,由题设,,PAPBAQQB均不为零。且PAPBAQQB又,PAQB四点共线,可设,(0,1)PAAQPBBQ,于是1141,11xyxy(1)2241,11xyxy(2)由于1122(,),(,)AxyBxy在椭圆C上,将(1),(2)分别代入C的方程2224,xy整理得222(24)4(22)140xyxy(3)222(24)4(22)140xyxy(4)(4)(3)得8(22)0xy0,220xy即点(,)Qxy总在定直线220xy上2.(安徽卷文22)设椭圆22:1(0)xyCabab其相应于焦点(2,0)F的准线方程为4x.()求椭圆C的方程;()已知过点1(2,0)F倾斜角为的直线交椭圆C于,AB两点,求证:2422ABCOS;()过点1(2,0)F作两条互相垂直的直线分别交椭圆C于,AB和,DE,求ABDE的最小值解:(1)由题意得:高考地理复习2222222844caacbabc椭圆C的方程为22184xy(2)方法一:由(1)知1(2,0)F是椭圆C的左焦点,离心率22e设l为椭圆的左准线。则:4lx作1111,AAlABBlB于于,l与x轴交于点H(如图)点A在椭圆上1122AFAA112(cos)2FHAF122cos2AF122cosAF同理122cosBF11222422cos2cos2cosABAFBF。方法二:当2时,记tank,则:(2)ABykx将其代入方程2228xy得2222(12)88(1)0kxkxk设1122(,),(,)AxyBxy,则12,xx是此二次方程的两个根.22121288(1),.1212kkxxxx2222221212121212()()(1)()(1)()4ABxxyykxxkxxxx22222222832(1)42(1)(1)()121212kkkkkkk.(1)高考地理复习22tan,k代入(1)式得2422cosAB.(2)当2时,22AB仍满足(2)式。2422cosAB(3)设直线AB的倾斜角为,由于,DEAB由(2)可得2422cosAB,2422sinDE22222424212212212cos2sin2sincos2sin24ABDE当344或时,ABDE取得最小值16233.(北京卷理19)已知菱形ABCD的顶点AC,在椭圆2234xy上,对角线BD所在直线的斜率为1()当直线BD过点(01),时,求直线AC的方程;()当60ABC时,求菱形ABCD面积的最大值解:()由题意得直线BD的方程为1yx因为四边形ABCD为菱形,所以ACBD于是可设直线AC的方程为yxn由2234xyyxn,得2246340xnxn因为AC,在椭圆上,所以212640n,解得434333n设AC,两点坐标分别为1122()()xyxy,则1232nxx,212344nxx,11yxn,22yxn高考地理复习所以122nyy所以AC的中点坐标为344nn,由四边形ABCD为菱形可知,点344nn,在直线1yx上,所以3144nn,解得2n所以直线AC的方程为2yx,即20xy()因为四边形ABCD为菱形,且60ABC,所以ABBCCA所以菱形ABCD的面积232SAC由()可得22221212316()()2nACxxyy,所以234343(316)433Snn所以当0n时,菱形ABCD的面积取得最大值434.(北京卷文19)已知ABC的顶点AB,在椭圆2234xy上,C在直线2lyx:上,且ABl()当AB边通过坐标原点O时,求AB的长及ABC的面积;()当90ABC,且斜边AC的长最大时,求AB所在直线的方程解:()因为ABl/,且AB边通过点(00),所以AB所在直线的方程为yx设AB,两点坐标分别为1122()()xyxy,由2234xyyx,得1x所以12222ABxx又因为AB边上的高h等于原点到直线l的距离所以2h,122ABCSABh()设AB所在直线的方程为yxm,由2234xyyxm,得2246340xmxm高考地理复习因为AB,在椭圆上,所以212640m设AB,两点坐标分别为1122()()xyxy,则1232mxx,212344mxx,所以21232622mABxx又因为BC的长等于点(0)m,到直线l的距离,即22mBC所以22222210(1)11ACABBCmmm所以当1m时,AC边最长,(这时12640)此时AB所在直线的方程为1yx5.(福建卷理21)如图、椭圆221(0)xyabab的一个焦点是F(1,0),O为坐标原点.()已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;()设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑项目工程咨询合同:专业建议、决策支持
- (2024版)电子设备购买贷款合同
- 2024年建筑公司彩钢瓦材料及施工订购合同
- 2024年度商务咨询与服务合同
- 学前儿童语言教育作业分
- 小学一年级下册数学100以内口算综合练习题
- 网络通信优化
- 2024体育教练与运动员关于体育训练的劳务合同
- 竞争格局演变与并购机遇
- 2024年度科技创新项目研发与转让合同
- 《婴幼儿行为观察、记录与评价》习题库 (项目三) 0 ~ 3 岁婴幼儿语言发展观察、记录与评价
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
- 环保产品管理规范
- 幼儿园:我中奖了(实验版)
- 赵学慧-老年社会工作理论与实务-教案
- 《世界主要海峡》
- 住院医师规范化培训师资培训
- 中央企业商业秘密安全保护技术指引2015版
- 螺旋果蔬榨汁机的设计
- 《脊柱整脊方法》
- 会计与财务管理专业英语智慧树知到答案章节测试2023年哈尔滨商业大学
评论
0/150
提交评论