已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_浙教版八下数学各章节知识点及重难点第一章 二次根式知识点一: 二次根式的概念二次根式的定义:形如(a0)的代数式叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2. 二次根式无意义的条件:因负数没有算术平方根,所以当a0时,没有意义。知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七: 最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。满足这三个条件的二次根式称为最简二次根式。知识点八: 同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。知识点九: 二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式二次根式的乘法:二次根式的除法: 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式强调:二次根式具有双重非负性。(4)二次根式的混合运算: 先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便二次根式运算结果应尽可能化简另外,根式的分数必须写成假分数或真分数,不能写成带分数例如不能写成(5)有理化因式:一般常见的互为有理化因式有如下几类: 与; 与;与; 与说明:利用有理化因式的特点可以将分母有理化(6)分母有理化:分母有理化也称为有理化分母。就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。(1)形如: 或 (2)形如: 或 【难点指导】1、如果是二次根式,则一定有;当时,必有;2、当时,表示的算术平方根,因此有;反过来,也可以将一个非负数写成的形式;3、表示的算术平方根,因此有,可以是任意实数;4、区别和的不同:中的可以取任意实数,中的只能是一个非负数,否则无意义5、简化二次根式的被开方数,主要有两个途径:(1)因式的内移:因式内移时,若,则将负号留在根号外即:(2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论即:6、二次根式的比较:(1)若,则有;(2)若,则有 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小第二章 一元二次方程知识点:1. 定义:形如 的方程叫做一元二次方程,其中,a 叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。例:若方程是关于x的一元二次方程,则( )A Bm=2 Cm= 2 D2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。例:按要求解方程(1)用配方法解方程: (2)用公式法解方程:3.一元二次方程根的判别式:= .0,方程有两个不相等的实数根;=0 ,方程有两个相等的实数根;M C. M D. 大小关系不能确定 4. 韦达定理: 例1:设x1、x2是方程2x2-4x-2=0的两个实根,求x12+x22。例2:若一个三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为 _5、一元二次方程应用题易错点分析:易错点一:(概念)1) 判断方程是否为一元二次方程时,忽略二次项系数不为“0”. 如:下列关于x的方程中,是一元二次方程的有-( ) ax2+bx+c = 0 x2+ 3x -5=0 2x2-x-3 = 0 x2-2+x3 = 02) 注意本单元在学习概念时,注意联系实际,加深对概念的理解与应用,避免就概念理解概念。 如:已知关于x的方程(m-n)x2 + mx+n=0,(m0),你认为:当m和n满足什么关系时,该方程为一元二次方程? 当m和n满足什么关系时,该方程为一元一次方程?3) 没有化成一般形式,混淆a、b、c.易错点二:(解法)(1) 因式分解法没注意方程没有写成A*B=0形式。如,解方程(x-1)(x-3)=8, 误解为 x1=1, x2=3.(2) 用公式法解方程时,没有化为一般式,造成符号错误或混淆a、b、c。 如,解方程x2-4x=2,误认为a=1,b=4,c=2.(3) 丢根。如,解方程3(x+2)=x2+2x,两边同时除以(x+2),得x=3.易错点三(一元二次方程应用题)审题不清,误解题意,不能正确地找出等量关系;检查方程两根是否符合实际意义。第3章 数据分析初步知识点一:平均数平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。平均数:把一组数据的总和除以这组数据的个数所得的商。平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。一般的,有n个数我们把叫做这n个数的算术平均数简称平均数,记做(读作“x拔”) (定义法) 当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。 且f1+f2+fk=n (加权法),其中表示各相同数据的个数,称为权,“权”越大,对平均数的影响就越大,加权平均数的分母恰好为各权的和。 当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;知识点二:众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动, 当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响; 当一组数据中不少数据多次重复出现时,可用众数来描述。众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数知识点三:方差与标准差 用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是 s2=(x1-)2+(x2-)2+(xn-)2; 一般的,一组数据的方差的算术平方根 S=称为这组数据的标准差。标准差 方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。或者说,离散程度小就越稳定,离散程度大就不稳定。练一练1、一个样本的方差是 则这个样本中的数据个数是_,平均数是_。2、某样本的方差是9,则标准差是_3、数据1、2、3、4、5的方差是_,标准差是_第四、五章有关四边形各个知识点知识点一、平行四边形1、正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形定义中的“两组对边平行”是它的特征,抓住了这一特征,记忆理解也就不困难了平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法同学们要在理解的基础上熟记定义2、熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线对称性四个方面的特征进行简述的(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)对称性:平行四边形是中心对称图形,对角线的交点是对称中心;(5)面积:=底高=ah;平行四边形的对角线将四边形分成4个面积相等的三角形3学会平行四边形的判别方法定义:两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 一组平行且相等的四边形是平行四边形对角线互相平分的四边形是平行四边形 补充两组对角分别相等的四边形是平行四边形知识点二、几种特殊四边形1、正确理解定义(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:平行四边形;一个角是直角,两者缺一不可(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:平行四边形;一组邻边相等,两者缺一不可(3)正方形:一组邻边相等的矩形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形2、熟练掌握性质(1)矩形:边:对边平行且相等; 角:对角相等、邻角互补; 对角线:对角线互相平分且相等; 对称性:既是轴对称图形又是中心对称图形(2)菱形:边:四条边都相等,对边平行; 角:对角相等、邻角互补; 对角线:对角线互相垂直平分且每条对角线平分每组对角; 对称性:既是轴对称图形又是中心对称图形(3)正方形:边:四条边都相等,对边平行; 角:四角相等; 对角线:对角线互相垂直平分且相等,对角线与边的夹角为45; 对称性:既是轴对称图形又是中心对称图形3学会平行四边形的判别方法(1)矩形的判定:满足下列条件之一的四边形是矩形 有一个角是直角的平行四边形; 对角线相等的平行四边形; 有三个角是直角的四边形。(2)菱形的判定:满足下列条件之一的四边形是菱形 有一组邻边相等的平行四边形; 对角线互相垂直的平行四边形; 四条边都相等的四边形(3) 正方形的判定:满足下列条件之一的四边形是正方形 有一个角是直角(或对角线相等)的菱形; 有一组邻边相等(或对角线互相垂直)的矩形; 有一组邻边相等并且有一个角是直角的平行四边形;4、几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等说明四边形ABCD的三个角是直角 (2)识别菱形的常用方法 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等 先说明四边形ABCD为平行四边形,再说明对角线互相垂直 说明四边形ABCD的四条边相等(3)识别正方形的常用方法 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角5、几种特殊四边形的面积问题(1)设矩形ABCD的两邻边长分别为a,b,则S矩形=ab(2)设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=ab(3)设正方形ABCD的一边长为a,则S正方形=;若正方形的对角线的长为a,则S正方形=知识点三、多边形1多边形的定义在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形,叫做多边形2探索多边形内角和公式n边形内角和公式: 任意多边形的外角和都等于3603 探索多边形对角线公式 从n边形的一个顶点出发可以引出n-3条对角线,n边形一共有条对角线知识点四、中心对称图形 1、 如果一个图形绕着它的中心点旋转180后能与原图形重合,那么这个图形叫做中心对称图形,这个中心点叫做对称中心。2、图形上对称点的连线被对称中心平分; 第六章反比例函数知识点1 反比例函数的定义一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解:x是自变量,y是x的反比例函数;自变量x的取值范围是的一切实数,函数值的取值范围是;比例系数是反比例函数定义的一个重要组成部分;反比例函数有三种表达式:(),(),(定值)();知识点2用待定系数法求反比例函数的解析式 由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。知识点3反比例函数的图像及画法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省贵阳市花溪区高坡民族中学2024-2025学年度第一学期12月质量监测九年级数学试卷
- 2021年高考英语考点总动员系列-专题03-介词和介词短语(解析版)
- 【名师一号】2020-2021学年新课标化学必修一-综合能力检测4-非金属及其化合物
- 四年级数学(上)计算题专项练习及答案
- 2021高考地理二轮专项突破:自然地理事物特征描述和原理阐释(2)课后训练及详解
- 《肝硬化的临床表现》课件
- 【名师一号】2020-2021学年苏教版化学必修二双基限时练21-蛋白质和氨基酸
- 【2022届走向高考】高三数学一轮(北师大版)基础巩固:第4章-第7节-正弦定理、余弦定理的应用举例
- 《甲状腺术后的护理》课件
- 室内配线工年终工作总结计划汇报
- 低值易耗品的验收
- 钢爪校直安全技术操作规程
- 抖音短视频运营部门薪酬绩效考核体系(抖音、快手、B站、西瓜视频、小红书短视频运营薪酬绩效)
- 陕西延长石油精原煤化工有限公司 60 万吨 - 年兰炭综合利用项目 ( 一期 30 万吨 - 年兰炭、1 万吨 - 年金属镁生产线)竣工环境保护验收调查报告
- 附件2.英文预申请书(concept note)模板
- 食品食材配送人员配置和工作职责
- 大病救助申请书
- GA/T 669.6-2008城市监控报警联网系统技术标准第6部分:视音频显示、存储、播放技术要求
- 220kV变电站主变压器中性点的接地方式
- 厦门物业管理若干规定
- 外科护理学试题+答案
评论
0/150
提交评论