




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章: 样本和抽样分布,一个统计问题有它明确的研究对象.,1.总体,研究对象全体称为总体(母体).,总体中每个成员称为个体.,一、总体和样本,总体可以用随机变量及其分布来描述.,例如:总体X为某批灯泡的寿命,为推断总体分布及各种特征,从总体中抽取n个个体,所抽取的部分个体称为样本. 样本中所包含的个体数目n称为样本容量.,2. 样本,样本的二重性: 抽样之前,样本为随机变量, 记 X1, X2 , Xn . 抽样之后,样本为一组数值, 记 x1, x2 , xn .,2. 独立性: X1,X2,Xn是相互独立的随机变量.,“简单随机抽样”,要求抽取的样本满足:,1. 代表性: X1,X2,Xn中每一个与所考察的总体有相同的分布.,说明:我们所考虑的都是简单随机抽样的样本。从而有:,X1,X2,Xn独立同分布,与总体分布相同。,例 1,设X1,X2,X3是取自正态总体,的样本,写出样本X1的概率密度函数。,二、统计量,设,为总体X 的样本,,为统计量.,例 2,设X1,X2,X3是取自正态总体,的样本, 指出下列哪个不是统计量.,几个常见统计量,样本均值,修正的样本方差,样本成数,修正的样本标准差,三. 抽样分布,统计量既然是依赖于样本的,而后者又是随机变量,故统计量也是随机变量,因而就有一定的分布,这个分布叫做 “抽样分布” .,1. 样本均值的正态分布,a. 单个正态总体下的样本均值的分布,设总体X 服从正态分布,为来自总体的一个样本,,定理1.,则,为样本均值,,b. 两个正态总体下的样本均值的分布,设总体X 服从正态分布,为分别来自X 与Y 的样本,X , Y,定理2.,相互独立,,总体Y 服从正态分布,分别为它们的样本均值,则,c. 非正态总体下的样本均值的分布,定理3.,且n较大时,近似地有,例4 设总体X服从正态分布,,,来自总体X,计算,.,设总体X和Y相互独立,且都服从正态分布,,,和,是分别来自X和Y的样本,求,的概率。,例5,定理 4 (样本方差的分布),2. 样本方差的卡方分布,定理 5 (单正态总体样本均值的 t 分布),设X1,X2,Xn是取自正态总体,的样本,分别为样本均值和修正的样本方差,则有,3. 样本均值的学生氏分布,定理 6 (两总体样本均值差的 t 分布),两个样本独立,样本修正的样本方差,则有,分别是这两个样本的,样本均值,,是这两个,设 两样本相互独立,定理 7 (两总体样本方差比的F分布),分别是这两个样本的,X1,X2,是来自X的样本,是取自Y的样本,为这两个样本修正的样本方差,则有,Y1,Y2,样本均值,,4. 样本方差比的F分布,第七章 参数估计,1 点估计,2 区间估计,1 点估计,点估计(Point Estimation),就是根据样本数据算出一个单一的值,用来估计总体的参数值,设总体X 中包含k个未知参数 ,,构造适当的统计量,2 评价估计量的标准,一无偏性,设 是来自总体X的一个样本,,是总体参数 的一个估计量,若,则称 为 的无偏估计量.,二、有效性,都是参数 的无偏估计量,若有,D( ) D( ),则称 较 有效 .,设 是总体参数 的估计量,,如果对任意 都有,则称 是 的相合估计量(或一致估计量).,三、相合性,例1 X为一总体, ,,X1,X2,Xn是取自总体的一个样本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文山职业技术学院《纪录片解析》2023-2024学年第二学期期末试卷
- 温州医科大学《跨文化管理》2023-2024学年第二学期期末试卷
- 江苏省镇江句容市2025届中考英语试题模拟试卷(6)英语试题含答案
- 六安市重点中学2025年初三阶段性测试(六)A卷英语试题试卷含答案
- 九江职业技术学院《大气污染控制工程》2023-2024学年第二学期期末试卷
- 正蓝旗2025年数学四下期末质量检测试题含解析
- 内江师范学院《数学课程论与教学教法》2023-2024学年第二学期期末试卷
- 华中师范大学《冶金物理化学》2023-2024学年第二学期期末试卷
- 枣庄市滕州市2024-2025学年三下数学期末学业质量监测模拟试题含解析
- 四川省眉山县市级名校2025年5月中考三轮模拟试卷化学试题含解析
- 电磁感应:“棒-导轨”模型4:单棒-有外力发电式
- 2025年公务员考试江西省(面试)试题及答案指导
- 江苏省期无锡市天一实验校2025届初三下学期第一次模拟考试英语试题含答案
- T∕CFA 0308053-2019 铸造企业清洁生产要求 导则
- 中国盐业集团有限公司 笔试 内容
- 全过程工程咨询投标方案(技术方案)
- DL∕T 1051-2019 电力技术监督导则
- T-CPIA 0056-2024 漂浮式水上光伏发电锚固系统设计规范
- 2024广东深圳市龙岗区总工会招聘社会化工会工作者及事宜笔试历年典型考题及考点剖析附答案带详解
- 公司供应商风险管理制度
- 2024北京市大兴初二(下)期中数学试卷及答案
评论
0/150
提交评论