高考数学第七章立体几何课时作业43直线、平面垂直的判定及其性质文.docx_第1页
高考数学第七章立体几何课时作业43直线、平面垂直的判定及其性质文.docx_第2页
高考数学第七章立体几何课时作业43直线、平面垂直的判定及其性质文.docx_第3页
高考数学第七章立体几何课时作业43直线、平面垂直的判定及其性质文.docx_第4页
高考数学第七章立体几何课时作业43直线、平面垂直的判定及其性质文.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业43直线、平面垂直的判定及其性质1(2019广东广州模拟)设m,n是两条不同的直线,是两个不同的平面,下列命题中正确的是(B)A若,m,n,则mnB若m,mn,n,则C若mn,m,n,则D若,m,n,则mn解析:若,m,n,则m与n相交、平行或异面,故A错误;m,mn,n,又n,故B正确;若mn,m,n,则与的位置关系不确定,故C错误;若,m,n,则mn或m,n异面,故D错误,故选B2(2019河南安阳一模)已知a,b表示两条不同的直线,表示两个不同的平面,下列说法错误的是(C)A若a,b,则abB若a,b,ab,则C若a,ab,则bD若a,ab,则b或b解析:对于A,若a,则a,又b,故ab,故A正确;对于B,若a,ab,则b或b,存在直线m,使得mb,又b,m,.故B正确;对于C,若a,ab,则b或b,又,b或b,故C错误;对于D,若a,ab,则b或b,故D正确,故选C3若平面平面,平面平面直线l,则(D)A垂直于平面的平面一定平行于平面B垂直于直线l的直线一定垂直于平面C垂直于平面的平面一定平行于直线lD垂直于直线l的平面一定与平面,都垂直解析:对于A,垂直于平面的平面与平面平行或相交,故A错误;对于B,垂直于直线l的直线与平面垂直、斜交、平行或在平面内,故B错误;对于C,垂直于平面的平面与直线l平行或相交,故C错误D正确4(2019福建泉州一模)在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是(D)解析:如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知E,F,G,M,N,Q六个点共面,直线BD1与平面EFMNQG垂直,并且选项A、B、C中的平面与这个平面重合,不满足题意,只有选项D中的直线BD1与平面EFG不垂直,满足题意,故选D5如图,直三棱柱ABC-A1B1C1中,侧棱长为2,ACBC1,ACB90,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1平面C1DF,则线段B1F的长为(A)A B1C D2解析:设B1Fx,因为AB1平面C1DF,DF平面C1DF,所以AB1DF.由已知可得A1B1,设RtAA1B1斜边AB1上的高为h,则DEh.又2h,所以h,DE.在RtDB1E中,B1E .由面积相等得 x,得x.6(2019唐山一模)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有(B)AAG平面EFH BAH平面EFHCHF平面AEF DHG平面AEF解析:根据折叠前、后AHHE,AHHF不变,又HEHFH,AH平面EFH,B正确过A只有一条直线与平面EFH垂直,A不正确AGEF,EFGH,AGGHG,EF平面HAG,又EF平面AEF,平面HAG平面AEF,过H作直线垂直于平面AEF,一定在平面HAG内,C不正确由条件证不出HG平面AEF,D不正确7如图所示,直线PA垂直于O所成的平面,ABC内接于O,且AB为O的直径,点M为线段PB的中点现有结论:BCPC;OM平面APC;点B到平面PAC的距离等于线段BC的长其中正确的是(B)A BC D解析:对于,PA平面ABC,PABC,AB为O的直径,BCAC,ACPAA,BC平面PAC,又PC平面PAC,BCPC;对于,点M为线段PB的中点,OMPA,PA平面PAC,OM平面PAC,OM平面PAC;对于,由知BC平面PAC,线段BC的长即是点B到平面PAC的距离,故都正确8(2019广州模拟)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:直线BE与直线CF异面;直线BE与直线AF异面;直线EF平面PBC;平面BCE平面PAD其中正确结论的个数是(B)A1 B2C3 D4解析:画出该几何体,如图所示,因为E,F分别是PA,PD的中点,所以EFAD,所以EFBC,直线BE与直线CF是共面直线,故不正确;直线BE与直线AF满足异面直线的定义,故正确;由E,F分别是PA,PD的中点,可知EFAD,所以EFBC,因为EF平面PBC,BC平面PBC,所以直线EF平面PBC,故正确;因为BE与PA的关系不能确定,所以不能判定平面BCE平面PAD,故不正确所以正确结论的个数是2.9(2019洛阳模拟)如图所示,在四棱锥P-ABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足DMPC(或BMPC)时,平面MBD平面PCD(只要填写一个你认为正确的条件即可)解析:PA底面ABCD,BDPA,连接AC,则BDAC,且PAACA,BD平面PAC,BDPC当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD10(2019兰州实战考试),是两平面,AB,CD是两条线段,已知EF,AB于B,CD于D,若增加一个条件,就能得出BDEF.现有下列条件:AC;AC与,所成的角相等;AC与CD在内的射影在同一条直线上;ACEF.其中能成为增加条件的序号是.解析:由题意得,ABCD,A,B,C,D四点共面中,AC,EF,ACEF,又AB,EF,ABEF,ABACA,EF平面ABCD,又BD平面ABCD,BDEF,故正确;不能得到BDEF,故错误;中,由AC与CD在内的射影在同一条直线上可知平面ABCD,又AB,AB平面ABCD,平面ABCD.平面ABCD,平面ABCD,EF,EF平面ABCD,又BD平面ABCD,BDEF,故正确;中,由知,若BDEF,则EF平面ABCD,则EFAC,故错误,故填.11(2018全国卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由解:(1)证明:由题设知,平面CMD平面ABCD,交线为CD因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,所以DM平面BMC而DM平面AMD,故平面AMD平面BMC(2)当P为AM的中点时,MC平面PBD证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点连接OP,因为P为AM中点,所以MCOP.MC平面PBD,OP平面PBD,所以MC平面PBD12(2018北京卷)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E,F分别为AD,PB的中点(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD证明:(1)因为PAPD,E为AD的中点,所以PEAD因为底面ABCD为矩形,所以BCAD,所以PEBC(2)因为底面ABCD为矩形,所以ABAD又因为平面PAD平面ABCD,所以AB平面PAD,所以ABPD又因为PAPD,所以PD平面PAB所以平面PAB平面PCD(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FGBC,FGBC因为四边形ABCD为矩形,且E为AD的中点,所以DEBC,DEBC所以DEFG,DEFG.所以四边形DEFG为平行四边形所以EFDG.又因为EF平面PCD,DG平面PCD,所以EF平面PCD13(2019山西临汾模拟)如图,已知四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MDNB1,E为MC的中点,则下列结论不正确的是(C)A平面BCE平面ABNBMCANC平面CMN平面AMND平面BDE平面AMN解析:分别过A,C作平面ABCD的垂线AP,CQ,使得APCQ1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体BC平面ABN,又BC平面BCE,平面BCE平面ABN,故A正确;连接PB,则PBMC,显然,PBAN,MCAN,故B正确;取MN的中点F,连接AF,CF,ACAMN和CMN都是边长为的等边三角形,AFMN,CFMN,AFC为二面角A-MN-C的平面角,AFCF,AC,AF2CF2AC2,即AFC,平面CMN与平面AMN不垂直,故C错误;DEAN,MNBD,DEBDD,DE,BD平面BDE,MNANN,MN,AN平面AMN,平面BDE平面AMN,故D正确故选C14(2019泉州模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列命题:三棱锥A-D1PC的体积不变;A1P平面ACD1;DPBC1;平面PDB1平面ACD1.其中正确的命题序号是.解析:连接BD交AC于点O,连接DC1交D1C于点O1,连接OO1,则OO1BC1,所以BC1平面AD1C,动点P到平面AD1C的距离不变,所以三棱锥P-AD1C的体积不变又因为V三棱锥P-AD1CV三棱锥A-D1PC,所以正确;因为平面A1C1B平面AD1C,A1P平面A1C1B,所以A1P平面ACD1,正确;由于当点P在B点时,DB不垂直于BC1,即DP不垂直BC1,故不正确;由于DB1D1C,DB1AD1,D1CAD1D1,所以DB1平面AD1C又因为DB1平面PDB1,所以平面PDB1平面ACD1,正确15如图,在三棱柱ABC-A1B1C1中,侧棱AA1底面ABC,M为棱AC的中点ABBC,AC2,AA1.(1)求证:B1C平面A1BM;(2)求证:AC1平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N平面AA1C1C?如果存在,求此时的值;如果不存在,请说明理由解:(1)证明:连接AB1与A1B,两线交于点O,连接OM.在B1AC中,M,O分别为AC,AB1的中点,OMB1C,又OM平面A1BM,B1C平面A1BM,B1C平面A1BM.(2)证明:侧棱AA1底面ABC,BM平面ABC,AA1BM,又M为棱AC的中点,ABBC,BMACAA1ACA,AA1,AC平面ACC1A1,BM平面ACC1A1,BMAC1.AC2,AM1.又AA1,在RtACC1和RtA1AM中,tanAC1CtanA1MA,AC1CA1MA,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论