高考数学第2节参数方程教学案文(含解析)北师大版选修4_4.docx_第1页
高考数学第2节参数方程教学案文(含解析)北师大版选修4_4.docx_第2页
高考数学第2节参数方程教学案文(含解析)北师大版选修4_4.docx_第3页
高考数学第2节参数方程教学案文(含解析)北师大版选修4_4.docx_第4页
高考数学第2节参数方程教学案文(含解析)北师大版选修4_4.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节参数方程考纲传真1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程1曲线的参数方程一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数并且对于t取的每一个允许值,由这个方程组所确定的点P(x,y)都在这条曲线上,那么这个方程组就叫作这条曲线的参数方程,联系x,y之间关系的变数t叫作参变数,简称参数2直线、圆、椭圆的参数方程(1)过点M(x0,y0),倾斜角为的直线l的参数方程为(t为参数)(2)圆心在点M0(x0,y0),半径为r的圆的参数方程为(为参数)(3)椭圆1(ab0)的参数方程为(为参数)根据直线的参数方程的标准式中t的几何意义,有如下常用结论:过定点M0的直线与圆锥曲线相交,交点为M1,M2,所对应的参数分别为t1,t2.(1)弦长l|t1t2|;(2)弦M1M2的中点t1t20;(3)|M0M1|M0M2|t1t2|.基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)参数方程中的x,y都是参数t的函数()(2)过M0(x0,y0),倾斜角为的直线l的参数方程为(t为参数)参数t的几何意义表示:直线l上以定点M0为起点,任一点M(x,y)为终点的有向线段的数量()(3)方程表示以点(0,1)为圆心,以2为半径的圆()(4)已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t,点O为原点,则直线OM的斜率为()答案(1)(2)(3)(4)2(教材改编)曲线(为参数)的对称中心()A在直线y2x上B在直线y2x上C在直线yx1上D在直线yx1上B由得所以(x1)2(y2)21.曲线是以(1,2)为圆心,1为半径的圆,所以对称中心为(1,2),在直线y2x上3直线l的参数方程为(t为参数),则直线l的斜率为_3将直线l的参数方程化为普通方程为y23(x1),因此直线l的斜率为3.4曲线C的参数方程为(为参数),则曲线C的普通方程为_y22x2(1x1)由(为参数)消去参数,得y22x2(1x1)5(教材改编)在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(为参数)的右顶点,则a_.3直线l的普通方程为xya0,椭圆C的普通方程为1,椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3a0,a3.参数方程与普通方程的互化1将下列参数方程化为普通方程(1)(t为参数);(2)(为参数)解(1)1,x2y21.t210,t1或t1.又x,x0.当t1时,0x1;当t1时,1x0,所求普通方程为x2y21,其中或(2)y1cos 2112sin22sin2,sin2x2,y2x4,2xy40.0sin21,0x21,2x3,所求的普通方程为2xy40(2x3)2.如图所示,以过原点的直线的倾斜角为参数,求圆x2y2x0的参数方程解圆的半径为,记圆心为C,连接CP,则PCx2,故xPcos 2cos2,yPsin 2sin cos (为参数)所以圆的参数方程为(为参数)规律方法消去参数的方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数(2)利用三角恒等式消去参数(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数易错警示:将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如例1.参数方程的应用【例1】(2019石家庄质检)在平面直角坐标系xOy中,圆C的参数方程为(为参数),直线l经过点P(1,2),倾斜角.(1)写出圆C的普通方程和直线l的参数方程;(2)设直线l与圆C相交于A,B两点,求|PA|PB|的值解(1)由消去,得圆C的普通方程为x2y216.又直线l过点P(1,2)且倾斜角,所以l的参数方程为即(t为参数)(2)把直线l的参数方程代入x2y216,得16,t2(2)t110,所以t1t211,由参数方程的几何意义,|PA|PB|t1t2|11.规律方法1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决2对于形如(t为参数),当a2b21时,应先化为标准形式后才能利用t的几何意义解题 (2019湖南五市十校联考)在直角坐标系xOy中,设倾斜角为的直线l的参数方程为(t为参数),直线l与曲线C:(为参数)相交于不同的两点A,B.(1)若,求线段AB的中点的直角坐标;(2)若直线l的斜率为2,且过已知点P(3,0),求|PA|PB|的值解(1)由曲线C:(为参数),可得曲线C的普通方程是x2y21.当时,直线l的参数方程为(t为参数),代入曲线C的普通方程,得t26t160,得t1t26,所以线段AB的中点对应的t3,故线段AB的中点的直角坐标为.(2)将直线l的参数方程代入曲线C的普通方程,化简得(cos2sin2)t26cos t80,则|PA|PB|t1t2|,由已知得tan 2,故|PA|PB|.极坐标、参数方程的综合应用【例2】在直角坐标系xOy中,圆C的方程为(x6)2y225.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|,求l的斜率解(1)由xcos ,ysin 可得圆C的极坐标方程为212cos 110.(2)法一:由直线l的参数方程(t为参数),消去参数得yxtan .设直线l的斜率为k,则直线l的方程为kxy0.由圆C的方程(x6)2y225知,圆心坐标为(6,0),半径为5.又|AB|,由垂径定理及点到直线的距离公式得,即,整理得k2,解得k,即l的斜率为.法二:在(1)中建立的极坐标系中,直线l的极坐标方程为(R)设A,B所对应的极径分别为1,2,将l的极坐标方程代入C的极坐标方程得212cos 110,于是1212cos ,1211.|AB|12|.由|AB|得cos2,tan .所以l的斜率为或.规律方法处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解当然,还要结合题目本身特点,确定选择何种方程(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用和的几何意义,直接求解,能达到化繁为简的解题目的 (2017全国卷)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数)设l1与l2的交点为P,当k变化时,P的轨迹为曲线C(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos sin )0,M为l3与C的交点,求M的极径解(1)消去参数t得l1的普通方程l1:yk(x2);消去参数m得l2的普通方程l2:y(x2)设P(x,y),由题设得消去k得x2y24(y0),所以C的普通方程为x2y24(y0)(2)C的极坐标方程为2(cos2sin2)4(02,),联立得cos sin 2(cos sin )故tan ,从而cos2,sin2.代入2(cos2sin2)4得25,所以交点M的极径为.1(2018全国卷)在直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为(t为参数)(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率解(1)曲线C的直角坐标方程为1.当cos 0时,l的直角坐标方程为ytan x2tan ,当cos 0时,l的直角坐标方程为x1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(13cos2)t24(2cos sin )t80.因为曲线C截直线l所得线段的中点(1,2)在C内,所以有两个解,设为t1,t2,则t1t20.又由得t1t2,故2cos sin 0,于是直线l的斜率ktan 2.2(2018全国卷)在平面直角坐标系xOy中,O的参数方程为(为参数),过点(0,)且倾斜角为的直线l与O交于A,B两点(1)求的取值范围;(2)求AB中点P的轨迹的参数方程解(1)O的直角坐标方程为x2y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论