椭圆及其标准方程一课时教学设想.ppt_第1页
椭圆及其标准方程一课时教学设想.ppt_第2页
椭圆及其标准方程一课时教学设想.ppt_第3页
椭圆及其标准方程一课时教学设想.ppt_第4页
椭圆及其标准方程一课时教学设想.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

椭 圆 及 其 标 准 方 程 第一课时教学设想,温州二十二中 数学组 谢炳剑,说 课 六 要 素,说 学 生,说 教 材,说 教 法,说 过 程,退出,学生分析: 对学生原有的认知结构进行分析: (1)学生在日常生活中对椭圆图形有所了解。 (2)学生对求轨迹方程的一般思想方法比较了解。 (3)学生对数形结合和分类讨论思想有所了解。,教材分析,地位和作用,教学目标,教学重点,教学难点,地位和作用:,椭圆及其标准方程是平面解析几何中的重要基础知识,也是圆锥曲线的基础。这段教材内容承上启下,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示,从而达到培养学生探索问题和解决问题能力的目的。同时,也是求曲线方程的深化和巩固。,教学目标 基于以上分析,按照教学大纲的要求及学生的素质确定以下“三位一体”的教学目标: 1、知识与技能目标: 理解椭圆定义、掌握标准方程及其推导,能根据椭圆标准方程求焦距和焦点,初步掌握求椭圆标准方程的方法。 2、过程与方法目标: 注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。 3、情感、态度和价值观目标: (1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。 (2)进行数学美育的渗透,用哲学的观点指导学习。,教学重点: 椭圆定义的理解及标准方程的推导,教学难点: 标准方程的推导,教 法 分 析,教法选择,学法指导,媒体选择,教法选择 没有学生参与的教学是不成功的教学,为了充分调动主体参与,必须为学生提供必要的知识背景,与学生一同探索发现。所以本节课将采用“多媒体优化组合激励发现”式教学模式进行教学。该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围。,学法指导: (一) 学法指导的目标: (1)使学生能对一些常见的数学思想方法有进一步理解和强化; (2)让学生在解题之后能进行一些思考; (3)让学生能通过交流和讨论,提高语言表达能力。 (二)学法指导的实施途径: (1)通过利用椭圆定义探索椭圆方程的过程,指导学生进一步理解数形结合思想,产生主动运用的意识;通过揭示由于椭圆位置的不确定所引起的分类讨论,进行分类讨论思想的指导;通过实际问题的解决,进行化归思想的指导。 (2)通过解题思路的脉络分析,对学生进行解题思考的指导。 (3)通过对学生发发言的点评,规范语言表达,指导学生进行交流和讨论。,媒体选择 (1)采用多媒体技术,目的在于充分利用其优良的传播功能。大容量的信息呈现和生动形象的演示(尤其是动画效果)对通过形式的学习兴趣、激活形式思维、加深概念理解有积极作用。制作中,采用交互技术,使课间的机动性得到加强。 (2)采用实物投影仪,目的作用利用操作方便、反馈及时的优点,弥补多媒体技术在即时信息反馈方面的不足。 (3)通过多媒体即时和实物投影仪的交替使用,取长补短。但必要时要借助课本、黑板等其他教学媒体。,教 学 过 程,新课引入,椭圆定义,例题分析,变式训练,作业布置,归纳小结,椭圆及其标准方程,方程推导,设问1:圆的概念是什么? (学生回答后,教师将一细线对折,以两对折点为定点,另一端旋转做出圆。) 设问2:将此细线固定的端点分成两个端点,然后让细线上的点运动到A,B两个位置,问此过程谁是定值,谁是变量? 设问3:如果我让这条细线上的点连续运动,大家观察这些点组成曲线的轨迹具有什么特点? 教师说明:最终所形成的点的轨迹与物理学中行星达到第二宇宙速度时的轨迹相同,称为椭圆。这就是今天我们要研究的主要内容(板书课题)。 设问4:大家考虑在现实生活中还有哪些具有椭圆曲线特征的实例?,(一)椭圆定义的获得及剖析 设问5:根据前面椭圆曲线的获得,请回答椭圆上的动点受什么条件束缚? 1 板书:定义 把平面内与两定点的距离和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。 (教师结合学生回答给出椭圆定义) 2 分析定义的内涵和外延 设问1:去掉“平面内”限制行不行,图形如何变化? 设问2:常数若小于或等于|F1F2|,图形会怎样变化? 设问3:如果让两定点距离扩大或减小而常数不变,则椭圆有何变化? 教师指明两定点及其距离对确定椭圆极为重要,并给出焦点和焦距的定义。,设问7:此种方法较复杂,那么如何化简这个无理方程呢? 化简: (a2 c2)x2+a2y2= a2(a2 c2) (1) 设问8:(1)式中有a2 与c2的平方差,给今后运算带来麻繁,能否通过换元法简化结果? 学生可能有两种回答: 1.如果学生令 a2 c2= b,那么教师提问b的范围是什么?再就b0及 方程形式统一性启发学生设a2 c2= b2 。 2.如果学生令a2 c2= b2那么教师问学生为何能想到此种换元,引出1的两种设想。 板书:设a2 c2= b2 ,则椭圆的标准方程为: (2),设问9:方程(2)的特征是什么? 设问10:如果我们以F1F2所在直线为y轴,其方程如何得出? 学生可能有两种回答: 1.如果学生说再按照前面方法推导一遍,那么教师给予肯定,同时提问能 否不推导而直接得出结论? 2.如果学生直接说出结果,那么教师问是如何得到这一结果? 以焦点所在直线为y轴建立坐标系,其标准方程为: (3),设问11:椭圆标准方程(2)与(3)有何不同? 教师小结: 在椭圆的两种标准方程中,总是ab0。 椭圆的焦点总在长轴上。 a、b、c有关系式 a2 b2 = c2 。如果焦点在x轴上,则焦点坐标为(c,0), (-c,0)。如果焦点坐标在y轴上,则焦点坐标为 (0,c),(0,-c)。,例题讲解:,平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程。,练习:,1 写出适合下列条件的椭圆标准方程 (1) a=4,b=1,焦点在x轴上; (2) a=4,c= ,焦点在y轴上; (3) 两个焦点的坐标是(-2,0)和(2,0),并且经过点 P。 2 已知三角形ABC的一边BC长为6,周长为16,求顶点A的轨迹方程。 设问12:通过题设条件分析,可知顶点A具备什么特征? 设问13:通过A点的特征,你能得到什么样的数学模型?,五.课堂小结:,1.知识: 理解椭圆的定义,掌握椭圆的标准方程。 注意随坐标系的选择

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论